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An Invariant Measure of Disorder in Patterns
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An invariant measure is introduced to quantify the disorder in extended locally striped patterns. The
measure is invariant under Euclidean motions of the pattern, and vanishes for a uniform array of stripes.
Irregularities such as point defects and domain walls make nonzero contributions to the measure.
Analysis of patterns generated in a reaction-diffusion system suggests two additional properties of the
measure: (1) Apart from small lluctuations, it is invariant for distinct patterns generated at fixed control
parameters. (2) It exhibits a jump at the onset of pattern dynamics.
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Spatiotemporal dynamics govern the evolution of most
physical and biological systems, e.g. , weather patterns,
earthquake dynamics, and cardiac rhythms. Comparison
of different disordered patterns in such complex systems
is hampered by the absence of suitable global variables to
quantify the disorder. Global invariants, such as gener-
alized dimensions and expansion rates, have proven use-
ful in the quantitative analysis of low dimensional chaotic
systems [1]. However, attempts to use fractal dimensions
and Lyapunov exponents to quantify spatiotemporal dy-
namics from time signals have not been successful. More-
over, these measures do not capture the essential spatial
characteristics of a pattern. In this Letter we introduce
an invariant measure, the disorder parameter 6~, which
quantifies the "amount of disorder" in an extended pat-
tern. An analysis of experimental patterns suggests that it
is invariant (apart from statistical fiuctuations) for distinct
patterns generated at fixed control parameters. Rather re-
markably, this purely static measure undergoes a sharp
increase near the onset of time dependence in the spatial
patterns.

We analyze patterns that have been obtained in a labo-
ratory study of a chlorite-iodide-malonic acid reaction
in a spatially extended open reactor [2]. The patterns
form in a thin disk of polyacrylamide gel, which is sand-
wiched between two thin porous glass disks that are in
contact with continuously fed well-stirred reservoirs; the
reagents in each reservoir are nonreacting [3]. The gel pre-
vents convection but allows for the diffusion of chemi-
cals; the homogeneous, temperature-controlled reservoirs
provide well-defined boundary conditions for the reaction-
diffusion system. Beyond critical values of the control pa-
rameters (i.e., reagent concentrations, liow rate of reagents
into the reservoirs, gel thickness, and reactor tempera-
ture), patches of regular spatial patterns (hexagons or
stripes) spontaneously emerge from a spatially uniform
background [4]. The wavelength of the patterns is fairly
constant over the whole system. The pattern evolves into
a large mosaic of domains with different orientations, as

Figs. 1(a) and 1(b) illustrates. If the system is driven
further from the onset of instability (e.g. , by changing
the malonic acid concentration gradient between the two
reservoirs), a critical control parameter value is reached at
which the pattern becomes time dependent [2]. A close
comparison between stationary patterns [e.g. , Figs. 1(a)
and 1(b)] and moving patterns [e.g. , Figs. 1(c)—1(f)] re-
veals different amounts of disorder. The stationary pat-
terns have larger domains of stripes of a single orientation,
while the moving patterns have more domain walls and de-
fects. The parameter 6& quantifies the observed variation
of disorder and permits a comparison between the amount
of disorder in distinct patterns. We consider here patterns
that consist of local patches of stripes, but the extension of
our results to other systems and to patterns consisting of
local patches of other planforms is conceptually straight-
forward.

The disorder in the pattern is measured with respect to
stripes of a given size; 6& = 0 for a perfect array of stripes.
Any reasonable measure of the disorder should be invari-
ant under translations, rejections, and rotations of the ex-
tended pattern (e.g. , moving or rotating the entire pattern
should not change the value of the disorder parameter).
In addition, if the measure of disorder is to be useful in
characterizing real (noisy) laboratory data, it should re-
quire only low order derivatives of the characterizing field
U(x) (which for the reaction-diffusion system, is the rela-
tive concentration of a product). The disorder parameter
defined below satisfies each of these conditions.

Since the pattern is locally striped, the field U(x) can
be expanded as

U(x) = A(x)e'"'" + c.c. ,

where the complex field A(x) is the envelope function
[5]. The magnitude of k is ko = 2'/A, A being the
characteristic wavelength of the pattern. The addition of
the complex conjugate c.c. allows the field U(x) to be
real. Since the basic state e'"" is factored out of U(x),
the envelope function varies on a scale large compared
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FIG. 1. Patterns generated in a reaction-
diffusion system involving a chlorite-
iodide-malonic acid reaction in a thin disk
reactor. The reaction occurs in a thin
layer of polyacrylamide gel sandwiched
between two reservoirs, A and B. The
malonic acid concentrations in reservoir
B were (a) 12.0, (b) 11.0, (c) 10.0,
(d) 9.0, (e) 8.0, and (f) 7.0 mM; the
malonic acid concentration in reservoir
A was 0. Other control parameters
were held fixed at [I ]Q' = 3.0 mM,A, B

[Na, S04]Q' = 4.5 mM, [C102 ]Q

18 mM, [C102 ]Q
= 0 mM, [H2S04]Q

0.5 mM, [H2S04]Q = 20 mM, tempera-
ture 7.0'C, and gel thickness 2.0 mm.
The transition from stationary to time-
dependent patterns occurs at a concen-
tration 10.5 mM of malonic acid in
reservoir B.

(2)

with A. Consequently, the expansion (1) can also be used
to reduce the experimental noise, through suitable local
averaging.

The disorder parameter is defined in terms of the enve-
lope function A(x) as

1
6i —— !oA(x)!dx dy,

kp(IA(x) I)
where (!A(x)!)is the mean value of !A(x)!over the pattern
and the operator O —= G(cI, BY) is defined by [6,7]

o = k V —(i/2)V . (3)
The domain of integration is the area of the pattern. 6~
is normalized so that the disorder per unit area 6i =—

B~/ f f dx dy) is dimensionless, and hence scale invariant.
We first show that 6i vanishes for an extended array of

stripes pointing normal to an arbitrary direction k', with

!k'! = kp. The field U'(x) for this array can be expanded
as U'(x) = A'(x)e'"'" with A'(x) = ae'1k ")'", with a
being the (constant) amplitude. Now

GA'(x) = iA'(x) [k . (k' —k) + 2 (k' —k) ]
= 2E'A'(x) (k' —k ) = 0, (4)

the last equality following from!k'! = !k! = kp.
Next we show that the disorder parameter of an ex-

tended pattern is invariant under rotations of the pattern,
or equivalently that 6& for a given field U(x) is indepen-
dent of the direction k chosen for the expansion (1). If the
expansion about a second vector k' is written as U(x) =
A'(x)e'"' + c.c., then A'(x) = A(x)e'1" ")'". Writing

!

G' = k' . V —(i/2)V, we have

G'A'(x) = [k' V —(i/2)V ]A(x)e' "
= e' " " ' f(k' V)A(x) + ik' (k —k')A(x) —(i/2) [V A(x) —(k —k') A(x)] + [(k —k') . V]A(x))

i(k —k'). x (5)

It follows that 6~ is independent of the direction of
expansion k, as we needed to show. The invariance
of 6i under translations and rejections follows from
similar calculations. Finally, it can be shown that the
combination of spatial derivatives 0 is the one of lowest
order that will give the above invariances of BE [6].

For an array of stripes, 6& will vanish only if the
characteristic wavelength of the stripes is A everywhere.
An array of stripes whose wave vector is k~ = kik will
have a disorder per unit area given by 6~ = !kE

—kp!/2.2 2

Thus, in calculating the disorder parameter from (say)
experimental data, the best possible value of ko should be
used [8] (even though the direction of k can be arbitrary).

6E(target) = 7rR/kp, (7)

while for a target centered in a square domain of
side L, 6E = (L/kp) fp dt sinh '(t ') = 1.7627(L/kp).
Observe that even though! GA! diverges at the origin, each
circular shell makes the same contribution to 6i. This is

As an example, we calculate 6i for a "target" pattern
(Fig. 2) whose envelope function is

A ( )
i(kor kx)— (6)

Hence GA, (x) = kpA, (x)/2r [9]. Thus for a target cen-
tered in a circle of radius R the disorder parameter is
given by
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FIG. 2. The "target" pattern given by U, (x) = ae'"'".

invaluable for the analysis of experimental data, which
is typically given on a finite lattice and is noisy. Since
A(x) changes rapidly close to a defect, the numerical
derivatives evaluated from its values on the lattice are
likely to have large errors. Hence the ability to discard
data close to a defect is crucial for the analysis of
experimental data. The numerical techniques presented
below have been checked by evaluating 6 i from a
numerically generated target pattern of -5 circles with
10% white noise at each lattice point. We find that with
-20 data points per wavelength 6~ can be estimated to
within 3% of the theoretical value.

The extraction of the envelope function from the
experimental data is a nontrivial task. If the stripes
were pointing in one direction everywhere in space, it
would be possible to extract A(x) using spectral methods
[10]. The presence of experimental noise, defects, and
unknown boundary conditions prevents such an analysis
for the patterns shown in Fig. 1. The method described
below is numerically inefficient, but works sufficiently
accurately. It may be possible to use methods based on
wavelet transforms to determine the envelope function
more efficiently [11].

We first need to evaluate the analytic signal A(xo)e'& ""
of the data U(x) in a neighborhood of xo. This is achieved
by fitting data inside a square to the functional form
a(xn) cos[k(xo) x + @(xo)]. For the cases we studied,
square regions centered at xo with sizes about the wave-
length A of the stripes give accurate estimates of the
parameters [12]. The least squares fitting is done using the
Lavenberg-Marquardt method [13,14]. Observe that we
not only estimate the parameters but also effectively reduce
the noise through the least squares fitting. The parameter
estimation is carried out at each point of the lattice, and
the wave vector k(xo) is chosen to be as close as possible
to the direction of its neighbors. [Thus at certain points
we need to choose the direction —k(xo) rather than k(xo).
If this were not done the imaginary part of the analytic
signal of U(x) would fail to be smooth. ] ko, estimated

by averaging the values of ~k(xo) [ over the entire pattern,
agrees with the value estimated from a spectral analysis.

The next task is to obtain the envelope function for
the pattern using Eq. (1) for a fixed k, from the analytic
signal a(x)e'l" ' '" & ' j. In principle all we need to do
is to divide the analytic signal by e'" to obtain the
envelope function A(x). However, one precaution needs
to be taken. Since we need to take spatial derivatives of
the field, A(x) needs to vary sufficiently slowly on the
scale of the lattice. If k were pointing in the x direction,
and k(x) were pointing close to the negative x direction,
we would need many lattice points per wavelength to
get reasonably accurate results. We find (by numerical
experiments) that with -20 lattice points per wavelength,
the following recipe gives acceptable results. If k(x)
is pointing to the right side of the y axis [i.e., the x
component of k(x) is positive], we choose the direction
of k to be the x direction; if k(x) is pointing to the left
side of the y axis, k is chosen to be the —x direction.

We have thus partitioned our pattern in two, the
analytic signal being expanded as e —'" in the separate
domains. In calculating the disorder parameter, we only
use those points all of whose nearest neighbors belong
to the same partition as the point itself; thus we can use
Eq. (2) for the separate domains. We are unable to use
the contributions from the center of a defect, or from
points on a domain wall pointing along the y direction.
But, as we have already indicated, the contributions from
these points can be dropped in evaluating the disorder
parameter without significant error. Furthermore, since
the field U(x) and hence A(x) change rapidly at such
points, their contributions are not likely to be accurate.

Figure 3 shows the values of 6 i for 30 patterns generated
in the chemical system (five of which are shown in
Fig. 1), suggesting two additional significant results. First,
observe that the values of 6~ at a given set of parameters
are bunched together. Thus not only is 6& invariant
under Euclidean motions of a given pattern, it appears to
be a (statistical) invariant of different patterns generated
by the system at the same set of control parameters.
In addition, the disorder parameter undergoes a sharp
increase near the point where the time dependence sets in
(when the malonic acid concentration falls below 10.5 mlle

[2]). Thus, it is possible to identify the onset of pattern
dynamics from a purely static measure. Other static
measures (such as correlation length) change smoothly
though the transition [2].

Irregularities such as targets, dislocations, and domain
walls make different contributions to Bi. Their effects can
be differentiated by generalizing 6& to a function 6~ given
by taking moments of ~GA(x)~. Specifically, for p, ( 2,
we define the generalized disorder by

P 2p,

2 p
~
oA(x) (" dx dy .

ko" (~A(X) ~)&

The powers of ko and (~A~) are chosen so that mean disor-
der B~ =—6~/ f f dx dy is dimensionless. The condition
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FIG. 3. The values of 6~ as a function of control parameter
(negative of malonic acid concentration). The patterns are
stationary for the two control parameters on the left, and time
dependent for the three on the right. Observe that the values
of 6& for distinct patterns at the same parameters are closely
bunched. Notice also that 6& undergoes a discontinuity near
the onset of time dependence in the patterns.
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p, ( 2 is required to prevent the divergence of the inte-
gral at the center of a target. For a target centered in a cir-
cle of radius R, lim~ 2 6~ = 7r/2ko. For a domain wall
the integral of Eq. (8) is finite, and thus lim~ 26~ = 0.
Hence lim~ q 8~ is proportional to the number of targets
in a pattern. Analysis of experimental data is in progress.

Unlike dynamical measures of disorder such as di-
mension density [15] and Karhunen-Loeve decomposition
[16], 6t is a measure of disorder of a given pattern. The
use of the underlying "perfect' structure in its definition
provides 61 with more information than measures such as
correlation length. For example, the disorder parameter
for a domain wall between stripes oriented in different di-
rections increases monotonically with the angle between
these stripes. The observed sharp increase in 61 at the
onset of pattern dynam'ics needs to be studied in numeri-
cal as well as other experimental systems.
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ment of Energy Office of Basic Energy Sciences (Q. O.
and H. L. S.).
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