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Domain Walls in Wave Patterns
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We study the interaction of counterpropagating traveling waves in 2D nonequilibrium media
described by the complex Swift-Hohenberg equation (CSHE). Direct numerical integration of CSHE
reveals novel features of domain walls separating wave systems: wave-vector selection and transverse
instability. Analytical treatment is based on a study of coupled complex Ginzburg-Landau equations for
counterpropagating waves. At the threshold we find the stationary (yet unstable) solution corresponding
to the selected waves. It is shown that sources of traveling waves exhibit long wavelength instability,
whereas sinks remain stable. An analogy with the Kelvin-Helmholtz instability is established.

PACS numbers: 05.45.+b, 47.20.—k

Traveling waves (TW) arise naturally in a wide variety
of physical settings. In nonequilibrium systems at the
threshold of primary instability, only TW with a wave
number close to some critical wave number q, appear.
In a large aspect ratio, isotropic system the direction of
propagation for TW is not fixed, therefore domains of
TW with arbitrary direction of propagation appear [1].
In one-dimensional systems, rotational symmetry degen-
erates into reliection symmetry, and only left- and/or
right-propagating waves remain. Interaction of these
counterpropagating waves and the structure of domain
walls in 1D systems have been intensively studied in
recent years, both theoretically [2—4] and experimentally
[5—7]. It has been shown that there are two types of
domain walls —passive (sinks) and active (sources).
Sources provide a wave-number selection, while sinks do
not. On the other hand, sources in 1D exist only at rather
small group velocities (v ~ e'I2, e is a growth rate of the
primary instability), otherwise they do not exist because
the trivial state is convectively unstable [3].

The situation is more interesting in the two-dimensional
case [1,8,9], where the directions of waves and the ori-
entation of domain walls are not enforced by the bound-
aries. The question of wave-numbers selection is therefore
transformed into one of wave-vector selection, since the
domain wall can adjust the direction of incoming or out-
going waves. The domain wall itself may no longer be
stationary, but may move in a certain direction if there is
no reflection symmetry of wave pattern with respect to the
domain wall axis. The second spatial dimension (along
the domain wall) opens the possibility for additional in-
stabilities of the wall [10]. In this Letter, we report the
analysis of domain walls in two-dimensional systems. We
deal here with a particular symmetric case of counterprop-
agating waves, and domain walls (almost) parallel to the
wave vectors, which nevertheless reveals many novel fea-
tures, including wave-vector selection by sources and their
transverse instability. The latter appears to be analogous
to the famous Kelvin-Helmholtz instability of a tangential
discontinuity of shear Rows.

We shall base our study on the complex Swift-
Hohenberg equation for the amplitude of the traveling
waves in rotationally invariant systems [11]:

where n = 1 —in describes the nonlinear response and

P and y = 1 —i' specify the linear dispersion relation
of waves. The complex order parameter i/t characterizes
the amplitude of waves, the field itself can be written in
the form u(x, y, t) = i/t exp[ —i(too —p)t] + c.c., where
coo is the (unspecified) carrier frequency of linear waves
with the critical wave number q, = 1. From (1) it readily
follows that the group velocity of waves with q

=- 1

equals v = 2p. In the following we assume without loss
of generality p ) 0, e « 1, and p, u = O(1).

Equation (1) for n, 77 « 1 has recently been asymptot-
ically derived for the transversely extended laser systems
[12,13]. It is also believed that this equation describes
traveling wave convection in binary mixtures [14,15],
however, in that case it has not been systematically de-
duced from governing Navier-Stokes equations.

We performed numerical simulations of Eq. (1) with
initial conditions corresponding to a domain wall per-
pendicular to the directions of counterpropagating waves
[Fig. 1(a)]. This state is not, however, a stationary so-
lution of (1). As Fig. 1(b) illustrates, near domain wall
wave fronts turn at a certain angle to the orientation of
the domain wall. This region of selected direction of the
wave vector propagates away from the domain wall and
tends to occupy the whole region of integration. For small
values of Pe 'I ~ 1 the selected domain wall remains
stable. In the meantime, at large enough pe 'I ~ 1

a new phenomenon occurs —the selected domain wall
is destroyed by a transverse instability [Fig. 1(c)]. This
phenomenon is missing in the 1D problem. As the insta-
bility enters a strongly nonlinear stage, counterpropagat-
ing waves "overturn, " scroll, and form a chain of spirals
[Fig. 1(d)]. Depending on parameters p and e the spirals
may remain stable (small p) or exhibit a core instability
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FIG. l. Sequence of snapshots of numerical simulation of
Eq. (1) at e = 0.5, n = 0, P = 1, y = 0 in a box 100 X 100
with counterpropagating waves separated by a domain wall
taken as initial conditions. (a) T = 0, (b) T = 85, angle
selection is seen near the domain wall, (c) T = 170, transverse
instability of the domain wall, initial stage, (d) T = 250,
nonlinear stage of the transverse instability, spiral creation.

(larger p) similar to those discovered in the Ref. [16] for
the Ginzburg-Landau model.

Let us place a domain wall at the x axis, and assume
that wave vectors of counterpropagating waves are almost
parallel to the domain wall. We can introduce in (1) an
ansatz p = [A~ exp(ix) + A2exp( ix)]ex—p[ —ipt]. The
envelope equations for slowly varying complex ampli-
tudes A~ z(X, Y, T) after appropriate rescaling take a form
of coupled Ginzburg-Landau-type equations:

BTA] + BgA) = A) + )ByA)
~ 2

—(IAil'+ 2IA. I')At + o(e'"), (2)

BTA2 —BxA2 = A2 + i ByA2
~ 2

—(IA21' + 2IAil')Az + o(e'"), (3)

where T = et, X = ev 'x, Y = (e/P)'/ y. We as-
sume that e (& 1 and therefore keep only lowest-order
spatial derivative terms in the amplitude equations.
Familiar Newell-Whitehead-Segel-type terms appear at
higher orders in e and have been neglected. We also
assumed n = 0 as is typical for nonlinear optics [12].
Equations (2) and (3) should be completed by appropriate
boundary conditions. For sinks one has to impose
boundary conditions corresponding to incoming waves.
For sources no-Aux conditions can be chosen.

Consider first the wave-vector selection problem. As
our numerical simulations of Eq. (1) suggest, a solution
with the wave vector exactly parallel to the domain wall,
in general, may not be a stationary solution. The domain

wall corrects the wave vector in a finite domain, and this
domain propagates outwards with some finite velocity.
To find the stationary solution of Eqs. (2) and (3), we
impose the following boundary conditions:

V'At = QtAt, A2 = 0 at y

= 0, QA2 ——QzA2, at y +~.
(4)

(5)

0.20

0.10

-1.0
-20.0 -10.0 0.0 10.0 20.0

0.00
0.0 0.5 1.0 1.5

/
I/2

2.0 2.5

FIG. 2. Selected value of QY as a function of P/~s at
n = 0, y = 0. The dashed line indicates the asymptotic value
Q~ = 0.279. . . . Inset: structure of the stationary domain wall
solution of Eqs. (2) and (3) S~2 for P && ~~; bold solid line,
!Si!; bold dashed line, (argS~)r, thin solid line, !Sq!; thin
dashed line, (arg S2)I .

Here Q~, Qz are corrections to the wave vectors to be
determined. By virtue of symmetry, Q~ = —Qz = —Q.
Of course, a one-dimensional domain wall cannot affect
the tangential component of the wave vector (here Q, ), so
only the QY component is selected. In the following we
shall assume Q, = 0.

After all the approximations and rescaling we have
made, system (2),(3) contains no parameters. Its station-
ary 1D (X-independent) solutions St z(Y) of Eqs. (2) and

(3) were found numerically (see Fig. 2, inset) and give a
universal value of QYo

= 0.279. . .. The positive value
of QYo (and the corresponding angle between the se-
lected wave vector and the domain wall 0„)indicates
that selected waves are emitted from the wall; i.e., this
is a source solution. In the original variables the an-

gle O„selected by the source is equal to 0.279(e/p)'/2.
This angle seemingly diverges at small p ~ e, however,
in the latter case previously neglected higher derivatives
—(e/P )7 i) rrrr must be added to the right hand sides of
(2) and (3). This limits the selected angle at small p (see
Fig. 2).

Besides this unique source solution there also is a con-
tinuum of sink solutions. For small negative angle 0 they
still can be described by Eqs. (2) and (3). Although the
sink solution with arbitrary small 0 can be constructed,
only solutions with I9 ( —0„in fact survive. It is easy
to see that the limiting angle for sinks 0„is equal to 0„.
Indeed, the domain wall itself selects the waves radiat-
ing at the angle 0„.These waves invade the bulk if the
magnitude of the y component of the group velocity of
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incoming wave is less than that of the selected wave,
or for the dispersion relation of (1), if lgyl ( Qyo. If
the opposite inequality holds, the incoming waves do not
permit the domain wall to emit the selected wave. Thus
we obtain that 0„=8„[17].If the angle between the
wall and the wave vectors is not small, dispersion terms
can be neglected in Eqs. (2) and (3), instead the terms
~v sinOBqAi 2 describing wave propagation in the y di-
rection (towards the domain wall) must be included. 1D
coupled amplitude equations of such a form were consid-
ered in [3]. In this limit there exists a family of sink so-
lutions for arbitrary Qy which again do not provide wave-
number selection.

An even wider class of domain wall solutions arises if
one relaxes the assumption that waves are exactly counter-
propagating. If the angle between wave vectors is not ~,
one can obtain a stationary moving domain wall solution
(see, e.g. , [4]). This case will not be considered hereafter.

In the stability analysis of domain walls of traveling
waves we assume that parameters n and y are zero.
Therefore, there is no bulk Benjamin-Feir instability of
traveling waves. We begin with the stability analysis
of the source solution, and after that discuss the stability
of sinks brieIIy. We seek the solution of (1) in the form

p(x, y, t) = ([St(Y) + ai(X, Y, T)]e"
+ [S (Y) + a (X, Y, T)]e ' Je

(6)
where S12(Y) is the stationary domain wall solution of (2)
and (3) shown in Fig. 2. Then we obtain one-dimensional
linearized equations for a& 2.

a1T + aix ialYY + (I —2lsi I' —2ls21')ai
—Si a 1

—2S1(S2a2 + S2 a2), (7)

a2T —a2x = ia2YY + (1 —2lsil —2ls2l )a2
—S2a2 —2S2(Siai + Si ai) . (8)

Assuming a12 = a12(Y)e'k + + a12(Y)e
(transverse undulations), one arrives at a system of four
equations for complex functions a12(Y), a12(Y). Solving
this system numerically with no-Aux boundary conditions
for ai'2 at lYl ~ ~ yields the dispersion relation A(k).
This curve is shown in the Fig. 3. It turns out that the in-
stability is long wave and aperiodic (eigenvalue A is real).
At k ) k, = 0.79 two imaginary eigenvalues appear
which describe propagating disturbances, however, they
are not important in the presence of long-wave instability.
Note that system (7),(8) does not contain any parameters,
so the curve plotted in Fig. 3 gives a full description of
the transverse instability of the domain wall for any P
and e, provided that parameters a, n, y « 1.

An analytical description of the transverse instability
of domain walls can be achieved in the long-wave limit
using phase approximation. The complex amplitudes
of two counterpropagating waves can be written in the
form A1,2 IA1,21 exp i $1 2. For long-wave perturbations
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FIG. 3. The growth rate of the transverse instability as a
function of its wave number. The dashed line indicates solution
of (13) A = k. Inset: the upper boundary of the instability band
k, for P —~e.

the width of the domain wall is negligibly small, and
one can reduce the analysis to phase dynamics in the
bulk on both sides from the wall, coupled via boundary
conditions across the wall. Far away from the wall the
amplitudes of traveling waves lA12l follow the evolution
of phases pt 2. Consider a solution in the form @ =
p, '@ + @'+ O(p), lAl =A + pA'+ O(p, ), and
x = p,X, y = p, F, ~ = p, T, where p, && 1 is a formal
parameter of expansion characterizing the smoothness of
solution. Under this assumption one readily obtains in the
leading orders equations for phases and amplitudes:

01,2g —241,2x ~ (41,2y) (9)

A12 —1, 2A12 + $, 2yy
—0, (10)

where ~ = Q is a frequency shift of the selected

traveling wave solution. Full phases @12 can be written
as a sum of undisturbed phases of the stationary solution
we just found and small perturbations @12 = ~gyy +
412. Linearized equations for 412 take the form

@1,2r —@1,2x —2Qy ~ 1,2y ~

Solutions of these equations are

y i ( y412= s12exp A 7.
l

sin klx+
2gyl i 2gy J

(12)

where A = p, 'A and k = p, 'k. Now we have to
connect $1 and $2 using boundary conditions. In order to
deduce these conditions one should go beyond the phase
equations.

For long-wave perturbations the solution locally is
close to a one-dimensional domain wall with its posi-
tion now being a function of the longitudinal coordinate
X. We can define the position of the interface Y11(X) as
given by the condition lA1(Y11(X))l = lA2(Yo(X))l, as for
the unperturbed solution. These quasi-one-dimensional
solutions have to overlap in some intermediate region
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1 (& Y —p, ' with the solution of the phase equations.
Then from (10) we obtain the following boundary con-
dition at the interface in the first order in p, :

The second condition can be obtained using ex-
act symmetries of Eqs. (2) and (3). We notice that these
equations can be satisfied by the solution Ai(x, y, t) =
A(x, y, t);Az(x, y, t) = A( —x, —y, t) where A is some
function. Looking for the perturbed solution conform-
ing this symmetry, we readily obtain the second boundary
condition si = —s2. The condition @iyy =

@zygo then
gives the dispersion relation for the transverse undulations

(13)

or A = ~k. For the source solution (Qy ~ 0), the
localized mode corresponds to a positive sign, A = k. So,
we obtained that in the long-wave limit k ~ 0 there is
an instability of sources with a growth rate proportional
to the wave number of disturbances (in dimensional
variables A = 2pk). From Fig. 3 it is obvious that
numerically found dependence A(k) indeed agrees with
analytical dispersion relation (13) at k ~ 0.

The stability of sinks at small 0 can be studied using the
same framework. Indeed, sinks correspond to Qy & 0,
and in order to get a localized solution a negative sign of
A must be chosen. For large negative 0, Eqs. (2) and (3)
as well as (9) and (10) do not hold, however, the stability
of sinks is guaranteed by the fact that incoming waves
trap all the perturbations in the core of the domain wall.
Therefore we conclude that sinks are stable with respect
to long-wave transverse undulations.

Our stability analysis is not applicable for p « 1,
because for p = O(Ve) higher order terms in Eqs. (7)
and (8) should be taken into account. At small p
also Q~ ~ 0 and our phase approximation breaks down.
Indeed, numerical solution of Eqs. (7) and (8) with added
Newell-Whitehead-Segel terms (~ir); + -r)y) ai z, x =
2~ax, y = e'i y shows that the instability band shrinks
and disappears for some critical p = 1.1e'i (see inset
in Fig. 3). This is also consistent with our numerical
simulations.

It is interesting to note that the transverse instability of
domain walls is very similar to the Kelvin-Helmholtz in-
stability of the tangential discontinuity between counter-
propagating Aows. Instead of Aows we deal here with
waves which, however, carry energy and momentum.
Matching phases of traveling waves across the interface
yields the dispersion relation (13), which bears exactly
the same form as the dispersion relation for the Kelvin-
Helmholtz instability [18]. The physical reason for the
instability here is that transverse displacement changes the
wave numbers on both sides of the interface, and due to
dispersion it creates a group velocity difference, which in
turn moves the interface in the direction of the initial dis-
placement.

Our results indicate that although sources play a key
role in the pattern selection for 1D systems [2,3,5—8],
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their one-dimensional analogs in extended 2D systems are
of lesser significance since they are typically destroyed by
the transverse instability. This conclusion is supported by
the early observations of domain walls of counterpropa-
gating waves in the binary mixture convection in 2D cells
[8,9]. These "zipper states" were relatively easy to ob-
serve in a small aspect ratio cell, whereas in a bigger cell
an instability sets in and destroys them [8]. On the other
hand, we found that the band of transverse instability col-
lapses at higher values of e. This agrees qualitatively with
observations of zipper states in extended lasers [19].
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