
VOLUME 75, NUMBER 18 PHYSICAL REVIEW LETTERS 30 OcTDBER 1995

Dynamical Behavior of a Dissipative Particle in a Periodic Potential Subject to Chaotic Noise:
Retrieval of Chaotic Determinism with Broken Parity
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Dynamical behaviors of a dissipative particle in a periodic potential subject to chaotic noise are
reported. We discovered a macroscopic symmetry breaking effect of chaotic noise on a dissipative
particle in a multistable system emerging, even when the noise has a uniform invariant density with
parity symmetry and white Fourier spectrum. The broken parity symmetry of the multistable potential
is not necessary for the dynamics with broken symmetry. We explain the mechanism of the symmetry
breaking and estimate the average velocity of a particle under chaotic noise in terms of unstable fixed
points.

PACS numbers: 05.45.+b

Success in explaining randomness of physical systems
by the deterministic chaos is among the most important
progress of recent statistical physics. Tent map chaos is
known to have the same randomness as the coin tosses
which are universally presumed completely random [1].
Therefore it was assumed that the sequence of tent map
chaos is far from its deterministic nature and that there
is almost no difference between the chaotic sequence and
the similar probabilistic random sequence except for their
microscopic structure.

However, recent studies in complex systems indicate
that there exists a condition in which an undiscovered
order of chaos emerges. "Chaotic itinerancy" [2—4] and
"evolution to edge of chaos" [5,6] are some interesting
examples. The effect of chaotic dynamics on information
processing has also been studied [7—11]. It was also
found that the microscopic time correlation of chaos is
important in the learning process of chaotic time series
by neural networks [12]. One notices that these complex
systems are generally multistable. Thus it seemed that the
effect of chaotic sequence on these multistable systems
differs qualitatively from that of similar probabilistic
random sequences. However, the high dimensionality
of the multistable systems of neural networks makes
the study of the effect of a chaotic sequence difficult.
Therefore it was required to select a simple multistable
system of low dimension in order to understand clearly
the difference between the effects of chaotic sequence
and probabilistic random sequence. In this paper, we
demonstrate unexpected behavior of a dissipative particle
in simple multistable systems subject to chaotic noise and
clarify the reason for the peculiar behavior.

Let us consider a particle subject to an external chaotic
stimulation in a periodic potential with an additional
positive gradient as in Fig. 1. Then a dissipative particle
obeys the equation

where sI is a chaotic time series. The potential is V(x) =
Vp(x) + ax, where Vo is any periodic potential and a is
a constant. In this paper, we report the results of our
study using a piecewise linear potential as a periodic
potential Vo(x) = h —(h/L) ~x[mod(2L)] —L~ for x ~
0, Vo( —x) = Vo(x), where L and h are arbitrary constants,
simply because comparison with a theoretical analysis is
easy in this case. But it is easily verified that the central
result is the same for a smooth periodic potential. In the
following we study a discretized equation,

x~+ 1 xpz (n = 0, 1, 2, . . .),
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which is obtained by integrating Eq. (1) from t„ to
t„+] = t„+ 1. It can also be verified that a choice of
At = t„+t —t„does not essentially alter the following
results. In the present work, we mainly use chaotic time
series produced by a tent map or a Bernoulli shift:

dx

dt
BV + g $I 6(t —j),

j=—oo

FIG. 1. Periodic potential with constant gradient a (=tan 0),
period 2L, and height h. One particle moves under this
potential. In this figure a = 0.005, I. = 3.0, and h = 0.3.

0031-9007/95/75(18)/3269(4)$06. 00 1995 The American Physical Society 3269



VOLUME 75, NUMBER 18 PHYSICAL REVIEW LETTERS 30 OcTOaER 1995

—
2~ g, (

+ 1/2 (tent map),
2g„—1/2 sgn(g, ) (Bernoulli shift) .

The minus sign in Eq. (3) is only for a demonstrative
purpose.

It is easily verified that the invariant densities of the
maps are constant, p(x) = 1 [for —0.5 ( x ( 0.5, other-
wise p(x) = 0], which is the same as the uniform random
number r„, ~r„~ ( 0.5, where invariant density p(x) is
a solution of the Frobenius-Perron integral equation:
p(y) = J dx 6[y —f(x)]p(x) [13]. Therefore, in the
limit of no potential barrier, the dissipative particle under
chaotic noise obeys the Brownian motion without a drift
term, which is the same with the particle under uniform
random noise. In addition, the correlation function of
the tent map is 6 correlated, which is also identical to
uniform random noise. Thus it is useful to characterize
the dynamical behavior of a system under chaotic noise
by comparing it with that under random noise [14].

One may naively guess that a particle under uniform
random noise [—0.5:0.5] should move downward (left) on
average, since noise is conventionally used in multistable
systems to realize a global minimum state, with "anneal-
ing" as a typical technique [15,16]. But, surprisingly, we
discovered that the particle under chaotic noise produced
by a tent map is driven upward (right) against the aver-
age potential gradient, which never occurs for probabilis-
tic random noise (Fig. 2).

Hereafter we discuss the case where parity symmetry
of the periodic potential holds, a = 0 = 0. Figure 3
shows the numerically obtained transition probability of
crossing the potential barrier per unit time as a function
of the potential width 2I. for a fixed potential gradient
h/L. The transition probability of a dissipative particle
to cross the barrier is much higher under the action of
the tent map noise compared to uniform random noise.
In the following we show that the hidden deterministic
coherence of chaos plays an important role in order to
explain the observed phenomena.

One finds that a particle under chaotic noise stays
mostly in the neighborhood of a basin of the potential.
Thus the particle needs to be forced continuously by
the noise having the coherent value to cross the barrier.
This condition is satisfied when chaotic noise stays in
the neighborhood of an unstable fixed point. The nearer
the injected chaotic noise is to the unstable fixed point

, the longer g stays in the neighborhood of g . By
calculating the probability that chaotic noise stays in the
neighborhood of the unstable fixed point enough times
to drive a particle to cross the barrier one obtains the
transition probability of the particle to cross the barrier
as a function of the barrier width when the slope of
the potential, h/L, is fixed and much smaller than the
magnitude of the unstable fixed point:

where A is the slope of the map (2 for tent map and
Bernoulli shift) [17]. Numerical simulation for a tent map
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FIG. 2. Chaotic noise given by a tent map drives the particle
upward against average potential gradient a, where a = 0.005,
L = 3.0, and h = 0.3. On the other hand, random noise drives
the particle downward along the average potential gradient.
The ordinate shows the distance scaled by the period of the
potential. xo = 0 (initial value). The potential used is the same
as in Fig. 1.

FIG. 3. Probabilities P„per unit time of a dissipative particle
to cross a barrier under a tent map noise for various widths
2L of potential harrier with a constant slope h/L = O. 1

and no average gradient, a = 0, obtained numerically. For
comparative purposes, the transition probability in cases of
Bernoulli shift and random noise are also shown. All noises
have the same invariant densities and amplitudes. %'e also
show a theoretical line given by Eq. (5) for the tent map.
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shows that ~iI*~ is 0.4, which should be contrasted with
0.5 as the largest unstable fixed point for this map. The
difference of the two values is attributed to the constant
slope h/L(=0. 1) which functions to decrease the climbing
velocity of a particle.

Equation (5) is the general expression first derived for
the barrier crossing probability of a particle driven by a
chaotic noise, characterized by the local Lyapunov index
at the unstable fixed point. It explains why the symmetry
break in the dynamics appears in the motion of the particle
under a tent map noise. The value of ~iI'~ for positive
direction of the particle is 1/2 and that of the negative
direction is 1/6. Thus the probability of crossing in
the positive direction is much higher than the negative
direction even when the potential has parity symmetry
V( —x) = V(x). The fact that the transition probability
in the case of the tent map noise is much higher than in
the case of uniform random noise can also be understood
by the presence of the coherence of noise in the former
case while not in the latter case. Asymmetric motion
against the average potential as shown in Fig. 2 is a clear-
cut result of the hidden order of the chaotic noise.

A question arises how a dissipative particle in a
periodic potential well behaves under action of chaotic
noise produced by a map which has symmetric unstable
fixed points. Numerical simulation showed that motion
of a dissipative particle in the same potential under a
sequence of noise created by a Bernoulli shift is not
unidirectional but diffusive with a diffusion constant
much greater than that under uniform random noise as
shown in Fig. 4. The diffusive motion is explained
by the equal transition probabilities to cross barriers in
the positive and negative directions, as expected from
Eq. (5), where the unstable fixed points are ~1/2 in
the Bernoulli shift map. The difference of the diffusion
constants between the Bernoulli shift and uniform random
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noise is again attributed to the presence of short-time
correlation in the Bernoulli shift noise as can be seen from
the difference of the transition probabilities of crossing
the barrier between the cases of the Bernoulli shift and
uniform random noise (see Fig. 3).

It should be noted, however, that the transition proba-
bility in the case of Bernoulli shift is much greater than
the case for the tent map (Fig. 3). Equation (5) for the
transition probability is applicable only when the mecha-
nism for a particle to cross the barrier is dominated by a
finite time series of monotonically increasing or decreas-
ing chaotic noise. This is the case for the tent map but
not for the Bernoulli shift. In the latter case, there is an
effective complex mechanism which increases the transi-
tion probabilities, in addition to the mechanism mentioned
above. In the case of a Bernoulli shift, chaotic noise start-
ing from a neighborhood of a negative unstable fixed point
can be reinjected to the neighbor of the same fixed point
after one iteration of a small positive value as seen in
Fig. 5. This chaotic series at least doubles the effective
correlation length and should be contrasted with the case
of a tent map, for which the time series must go through a
large positive value to be reinjected into the neighborhood
of the negative unstable fixed point. Therefore the corre-
lated motion of a particle climbing a slope would largely be
interrupted. This observation qualitatively explains why
the transition probability in the case of a Bernoulli shift is
much larger than the case of a tent map.

Finally, to demonstrate the effect of the chaotic coher-
ence more explicitly, we examined the effect of chaotic
noise in the same potential discussed in Fig. 2. Here we
used the noise produced by iI„+t = f (r)„), where f(TI)
is the tent map [see Eq. (4)] and N is the time of iteration
of the tent map. N = 1 corresponds to the case discussed
above. Figure 6 shows how the speed of the particle driven
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FIG. 4. Under the action of noise generated by the Bernoulli
shift for the symmetric potential (a = 0), the dynamics is
a plain diffusion: (x„),„„b~,~ n However, the. diffusion
constant under the Bernoulli shift is much larger than that under
uniform random [—0.5:0.5], where the two noises have the
same invariant densities and amplitudes. The ordinate shows
the mean square distance scaled by the period of the potential,
2L. Data subject to the Bernoulli shift are ensemble averages
over go (initial value of the map) of 100 systems, where L = 2,
h = 0.2, a = 0, and xo = 0.
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FIG. 5. Typical sequence of (a) the tent map and (b) the
Bernoulli shift.
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FIG. 6. The trace of a particle motion versus time step. N is
the iteration number of the tent map. For N ~ oo, the time
series is entirely a random number. The potential and the
initials used are the same as in Fig. 2.

upward decreases as the number N increases. This phe-
nomenon is also explained by Eq. (5). An increase of N
corresponds to an increase of A as A = 2+. Thus an in-
crease of N decreases the transition probability as shown in
Eq. (5). Thus systems having a large Lyapunov exponent
A (A = lnA = N ln2 in this case) lose the determinism
of a chaotic system; they approach plain random systems.
This observation may be related to the recent computer
simulation showing that some chaotic systems evolve to
A = 0 ("edge of chaos" ), because chaotic coherence works
effectively in systems with a relatively low Lyapunov ex-
ponent as demonstrated here. High performance of a Hop-
field network with chaotic noise at the edge of chaos [11]
may also be explained by the present work.

The drift or diffusion phenomena of chaotic systems
without a multistable potential well have been discussed
previously [18]. It was reported that the difference of
the drift or diffusion rate was caused by the differences
of the invariant density or the initial condition of the
chaotic noise. We demonstrated here that neither these
quantities nor other ordinary statistical quantities, such as
correlation function of chaotic noise, explain the differ-
ence of the overall dynamics in multistable systems. Even
if the higher order statistical quantities are successful
in demonstrating different characters of the noise, quan-
titative prediction or estimation of the dynamics under
chaotic noise was found to be difficult by the conventional
approach [19,20]. However, the analysis of the effect of
chaotic noise on a multistable system by focusing the
unstable fixed points of the chaotic noise was found to
be a new alternative tool to estimate such characteristics
of the dynamics.

In this paper, we emphasized that the emergence of
symmetry breaking dynamics under chaotic noise is a
special phenomenon in multistable systems. The multista-
bility is widely observed in several fields of nature. Pro-
tein motors are good examples. Magnasco showed the
condition in which symmetry breaking dynamics (which
models the motion of muscle) occurs when a dissipa-
tive particle moves in a periodic potential under cor-
related noise [21]. He proved that the asymmetry of the

periodic potential and time correlation of the driving force
make it possible to produce broken symmetry dynamics.
In contrast to his finding, we reported in this paper another
condition for which broken symmetry dynamics emerges.
In this condition, asymmetry of the periodic potential is
unnecessary if certain chaotic noise works as a driving
force. The only condition to produce asymmetric motion
is an asymmetric distribution of unstable fixed points of
the chaotic noise. The emergence of the broken symme-
try dynamics under chaotic noise manifests itself as a typi-
cal example of the general findings that "multistability
retrieves deterministic nature of chaos. "
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