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Anisotropy of Upper Critical Field and Pairing Symmetry
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We calculate the angular dependence of the upper critical field H, 2, taking account of the effect of
the gap anisotropy and nonlocal correction. If the Fermi surface is nearly isotropic in the a-b plane,
the results show that the angular dependence of the upper critical field for LaSrCu04 in the a-b plane is
qualitatively explained by an order parameter 6 with the symmetry of the pairing state d 2 —y2 consistent
with a recent experiment by Raman spectroscopy.
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The symmetry of the pairing state of the high tempera-
ture oxide superconductors is of great interest. It is exten-
sively investigated by many experimental investigations
such as NMR [lj, specific heat [2], thermal conductiv-
ity [3], penetration depth [4], photoemission spectroscopy
[5], Raman spectra [6], and tunneling [7], especially for
YBa~Cu, O, and Bi2Sr&CaCu20& systems. Besides the
above experiments, Hanaguri et al. measured the upper
critical field H, 2 of single crystal La{ s6Sro {4Cuo4 [8].
They observed a large anisotropy of H, 2 when the mag-
netic field is applied in the (1,1,0) plane. The ratio of
H, 2~ for H J c axis to H, 2~~ for H ~~ c axis is about 10,
depending on the temperature. Its angular dependence
is well expressed by the effective mass model suitable
for anisotropic three-dimensional superconductors. Fur-
ther they found the anisotropy of H, 2 about 8% in the a-b
plane at the reduced temperature t = T/T, —0.9. Its
anisotropy has fourfold symmetry, and H, 2 takes maxima
along the [~1, 0, 0] and [0, ~1,0] directions and minima
along the [~1,~1,0] directions. They considered three
possibilities for the fourfold symmetry of the anisotropy
of H, 2 in the a bplane [8]. -The first is due to the twin
structure in the orthorhombic phase. If H, 2 in the or-
thorhombic phase has twofold symmetry in the c plane,
fourfold symmetry of H, 2 resulting from the superposition
of the twofold symmetry is expected from the twin struc-
ture. They rejected this possibility because this model
leads to minimum H, 2 for H ~~ [100] and cannot explain
the angular dependence of H, 2. The second possibility is
due to the anisotropy of the critical current density J, in-
duced by the twin boundary. But since J, is small near
the transition temperature, they could not observe clear
anisotropy of J, . They arrived at the third possibility due
to the electronic state in the Cu02 layer for their sample.
The magnitude of the anisotropy in the a-b plane is very
large compared to that of conventional superconductors.
The anisotropy of the cubic material Nb, for example, is
about 10% at t —0.1 and decreases with increasing tem-
perature [9]. Its origin has been considered due to the
nonlocality and the anisotropy of the Fermi surface. In
this Letter, we follow the third possibility of [8] and fo-
cus the angular dependence of the upper critical field H,.2

A(r) = K(q)h(r), (3)

where q = RV/i —2eA/c and A is the vector potential.
For the pure superconductors near the transition tempera-
ture T„ the kernel K(q) is given by [10,11]

Z(q) = ~g~x(0) g A,„(y'(k) (v q)'"),
n=O

where N(0) and v are the average density of states and the
velocity at the Fermi surface, respectively. Further,

ln forn =0,
A2n 2{—1)'

lg(2n + 1) for n ~ 1,
(5)

where co& is the Debye cutoff frequency, y (= 0.577)
Euler's constant, and g(z) Riemann's zeta function. The
angular brackets in Eq. (4) denote the average at the
Fermi surface, namely,

f dA Jv"(A)A

f de w(0)

in the a-b plane for LaSrCu04. Since the measurements
were done near the transition temperature (t ~ 0.9), we
calculate H, 2 for pure superconductors near the transition
temperature T„ including the gap anisotropy and the non-
local correction. The results show that the anisotropy of
H, 2 in the a-b plane is qualitatively explained by the gap
anisotropy with the symmetry of the pairing state d 2

even if the anisotropy of the Fermi surface is small in
the a-b plane. For one pairing state approximation, the
anisotropic BCS pairing interaction is expressed by

Vk k' = g cjoy (k) @(k'), (1)

where g ((0) is a constant, P(k) expresses the symmetry
of the interaction, and k and k' are the unit wave vectors.
The order parameter Ak (r) is expressed by

Ak(r) = rt (k)A(r). (2)

The upper critical field H, 2 is the maximum field for
which the linearized Ginzburg-Landau equation of the
order parameter Ak(r) has a nontrivial solution

0031-9007/95/75(2)/323(3)$06. 00 1995 The American Physical Society 323



VOLUME 75, NUMBER 2 PH YS ICAL REVIE% LETTERS 10 JUL~ 1995

The upper critical field of Eq. (3) with the kernel K(q) up
to n = 1 corresponds to that of the effective mass model
for uniaxial materials. The terms n ~ 2 in Eq. (4) are
the nonlocal correction to the effective mass model. The
factor P(k) which expresses the gap anisotropy appears
on the average at the Fermi surface in product form with
the Fermi velocity [12]. First we consider the eigenvalue
equation for the n = 1 part of Eq. (4),

&4'(k)(v q)')~o(r) = ~~ (r). (6)
The lowest eigenvalue A and the eigenfunction Ao(r) are
given by

4ehH&@ (k)v, )
( )

(eH/ch—v))x'

q= q. , —', -d H=
(10)

Since the order parameter for the upper critical field does
not contain the g coordinate, we have dropped the g

component of r, v, and q. By use of the quantities defined
by Eqs. {5)and (10), Kd{q) and K,d{q) are written as

Kd(q) = lglN(0) {Ao + (2p + 1)A2&$ (k)6~)E
+ 3(2p + 2p + 1)A4&@ (k)6i)e ),

(11)

where

8
& 4'(k) v.')

i, (4"(k) ')
We have chosen the coordinate system (x, y, z) in which
the g axis is parallel to the external magnetic field, the
x axis is in the a-b plane, and the y axis is directed
along the c axis. The vector potential is taken as
A = (O, Hx, O). The parameter g of Eq. (8) gives the
anisotropy in the effective mass model. Next we include
the nonlocal correction due to the terms n ~ 2 in Eq. (4).
With respect to the eigenfunction Ao(r), the kernel K(q)
is separated into the diagonal part Kd(q) and the off-
diagonal part K,d(q):

K(q) = Kd(q) + K,d(q). (9)
Let us introduce quantities r, v, q, and H, which are
defined by

r = (x, riy), v = (v, gvY),

and other similar symmetry relations, we have

&@z(f)v,')
)(y'(k)v,') '

&4'(k) ') = -&4'{k)v').

(14a)

(14b)

where

&@ (k)6 ) = A + Bcos40, (14c)

3y2y2A= —P {k) (V + V)
16

(15)

B = —
&@ (k) (Vx —

3vxvi )). (16)

Thus, rI and &P (k)6i ) are isotropic and the anisotropy
with the fourfold symmetry appears in the term

&P (k)6~). For P(k), we consider two cases of the
Pairing StateS dx2 —y2 and dxy.

~2(kx —ki) = ~2cos2$ for d z

2~2kxky = ~2sin2rj for d ~,

where k is the unit wave vector in the a. bplane and P(k-)
is normalized as

q . To retain the lowest order of the anisotropy H, 2,
it is sufficient to keep only the diagonal part Kd(q),
because the off-diagonal part K,d(q) is the first order
of the anisotropy [&P (k)6i v ) and &P (k)6 )] and its
contribution to the eigenvalue is the second order. After
some calculations, we obtain the upper critical field H, 2

in a form

4eRH, 2 6 3A4&@ (k)6t )6
A2&4 (k)vJ ) [A2&4' (k)vJ )1

(13)

where 6 = ln(T/T, ). For the magnetic field applied in
the direction (H cos0, H sin0, 0) with respect to the
crystallographic axes, the velocity v is expressed by v =
(—Vx sin0 + Vy cos0, Vz, Vx cos0 + Vy sin0), where V
is the velocity with respect to the crystallographic axes.
Using the relations

&4'(k)v'") = &4'(k)v'") & &0'{k)v'"),

&y'(f)v, v, ) = o,

K.,(q) = IglN(O)A. [&@'(k)v', v')q+q-
+ &0'(k)v')q+] (12) @ (k) = l.

where

q+q
qx ~ 1 qy~ p v+

vx Lvy

(18)

If we assume that the Fermi surface is isotropic in the a-b
plane, it it easy to show that

&y'(f)6', ) = —,&v,'),
vz =v+v, and e=-2

C

The bar over the product qs+q in Eq. {12)means that
we take the sum of all the permutations of q+ and

324

and

&Vi)z/4 for d '-Y'
—&V~)z/4 for d ~,

{19)
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where Vz is the magnitude of the velocity in the a-b
plane and ( . .)z means the average with respect to the Z
direction at the Fermi surface. Since A2 ~ 0 and A4 ~ 0
from Eq. (5), the expression (13) for the upper critical
field along the [~1,0, 0] and [0, ~I, O] directions takes
the maxima for the symmetry of the pairing state d 2 —y2

and the minima for the symmetry of d,y. From ex-
periments [8], we conclude the pairing state as d 2 —y2 for
LaSrCu04. In the recent Raman spectroscopy experiment
for LaSrCu04 [13], the symmetry of the gap is favored
for d 2 y2. Thus, we have the consistent symmetry
of the pairing state d 2 y2 in both experiments. We
estimate roughly the magnitude of the anisotropy of H, 2

near the transition temperature for (V~)z —(V~)z in the
following. Using Eqs. (13), (16), and (19), it is given
by

AH, z

H, p
(20)

This value is smaller than the experimental one by about
a factor of 4. The origin of the quantitative discrepancy
may be caused by our assumption of the isotropic Fermi
surface.

In conclusion, we have calculated the upper critical
field H, 2, taking account of the gap anisotropy and the
nonlocal correction. The results show that the symmetry
of the pairing state d+2 —y2 is consistent with both the
anisotropy of H, 2 and Raman spectroscopy. We desire
to measure the upper critical field H, 2 in the a-b plane of
other high temperature oxide superconductors to clarify
its origin of the anisotropy.

We are grateful to Professor Y. Koike for useful
discussions.
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