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Choptuik Spacetime as an Eigenvalue problem
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Hy fine-tuning generic Cauchy data, critical phenomena have recently been discovered in the black-
hole/no-black-hole "phase transition" of various gravitating systems. For the spherisymmetric scalar
field system, we find the "critical" spacetime separating the two phases by demanding discrete scale
invariance, analyticity, and an additional reflection-type symmetry. The resulting nonlinear hyperbolic
boundary value problem, with the rescaling factor 5 as the eigenvalue, is solved numerically by
relaxation. We find 5 = 3.4439 ~ 0.0004.

PACS numbers: 04.25.Dm

Recently, Choptuik [1]has studied the gravitational col-
lapse of a real scalar field (massless or massive, mini-
mally or conformally coupled) in spherical symmetry,
using an adaptive mesh refinement numerical technique
that allows him to study details on very small spacetime
scales. To describe his results concisely, we invoke coor-
dinates (p, P) on the phase space of the spherisymmetric
gravitating scalar field, where p is any smooth coordinate
such that p = 0 is the hypersurface that divides black-
hole from no-black-hole spacetimes, while p denotes the
remaining coordinates. Choptuik's results strongly indi-
cate the following conjectures.

(1)For any choice of coordinate system {p, P j, the mass
of sufficiently small black holes is given by M = f(p)pi'
("scaling" ), where y —0.37 is a universal exponent.

(2) There is a "critical solution" ip = O, P = P, (t)),
which acts as an intermediate attractor in a thin sheet
surrounding the p = 0 hypersurface on both sides
("universality" ).

(3) This solution shows a discrete homotheticity
("echoing"), or scale invariance, to be defined more
precisely below, with a logarithmic rescaling factor
5 —3.44.

More recent research indicates that these properties hold
for other self-gravitating systems. Universality, echoing
(with 5 —0.6), and scaling (with y —0.37) were found
in collapse of axisymmetric gravitational waves [2]. Uni-
versality, continuous self-similarity, and scaling (with y—
0.36) were found in perfect fiuid collapse with p = p/3
[3]. The exactly self-similar solution was calculated as an
eigenvalue problem [3], and the critical exponent calcu-
lated to high precision (y = 0.355 8019) by perturbing it
[4]. Critical exponents for other values of k in p = kp
were calculated in this manner [5] and confirmed in col-
lapse calculations [6], with values strongly dependent on
k. Self-similar solutions were also calculated for a com-
plex scalar field [7] and an axion-dilaton combination [8].
A value (7 = 0.387 106) of the critical exponent for the
complex scalar field was derived by perturbing the self-

ds = —n(r, t) dt + a(r, t) dr

+ r (d0 + sin 0dp ), (2)

where the remaining gauge freedom is fixed by the
condition n(r = 0, t) —= 1, and auxiliary matter fields as

r
X(r, t) = 42vrG —P „,a

Y(r, t) = 427rG —P, .

(3)

The symmetry of the attractor observed by Choptuik
can be expressed in coordinate language as Z(r, t) =
Z(re, te ), where Z stands for any one of n, a, X,
and Y, and 5 —3.44 is a constant. Here the zero of
t has been adjusted so that (0, 0) is the accumulation
point of the echos. We introduce auxiliary (nonmetric)

similar solution [9], but the latter is apparently not an
attractor [10].

Universality, scale invariance, and critical exponents in-
dicate an exciting new connection between renormalization
group theory and classical general relativity. y appears to
vary from one physical system to another, but its values
for vacuum or trace-free matter are remarkably similar in
the examples found so far.

In this Letter, we impose echoing, and an additional
reAection-type symmetry, in our ansatz, together with
analyticity, and solve the resulting nonlinear hyperbolic
eigenproblem, instead of evolving and fine-tuning Cauchy
data. In the language of renormalization group theory, we
find a fixed point of gravitational collapse under a rescaling
of space and time by solving the renormalization group
equations. In a future paper we intend to calculate y by
perturbing around the fixed point, along the lines of [4,5,9].

The Einstein equations we consider here are

G~b = 87r G($, @b
—

zg~b @,@'), (1)

in spherical symmetry. The matter equation @," = 0
follows as a Bianchi identity. Following Choptuik, we
define the metric as
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p —= 2~r/6, C —= s —bo(r),

Z(C. V + 2~) = Z(C. ~)
Evans and Coleman [3] found the critical spacetime

of spherical fiuid collapse by imposing continuous homo-
theticity. In our coordinates, n, a, and the fluid variables
corresponding to X and I' are then functions of g alone,
the Einstein and matter equations are reduced to a system
of nonlinear ordinary differential equations (ODEs), and
the solution is uniquely specified by regularity conditions
[3,11]. Here we use a similar approach in order to find
Choptuik's critical spacetime of scalar field collapse. [Af-
ter this work was begun, the same approach was used to
calculate (continuously) self-similar solutions for the com-
plex scalar field [7] and an axion-dilaton combination [8].]

We solve the field equations for the P derivatives of the
fields Z as functions of these fields and their p derivatives.
It is convenient to use the new field g —= e&'~~ a/n instead
of n, andX = X ~ I'insteadofX and Y. Theresulting
equations are

a «
= 2a[(1 —a ) + a (X+ + X )],

g« =g(1 —a ),
X+ «

= 8+/(I + D),

x, =a /(1 —D),
where we have introduced the abbreviations

(7)

(8)

2'7T d 0 D —= z 'e&g, (10)

B~ —= —(1 —a )X~ —a X—X~ —X—~ z DX=1 2. 22. — 2~

Th"re is also one equation containing only the Z and Z ~,

coordinates where the symmetry appears as a simple
periodicity of Z:

7
—= In(+. t), g = In(~r/t), Z(g, r) = Z(g, r + 5).

(4)

In the following, we use the upper sign (t ) 0). The
equations for the lower sign are obtained by changing the
sign of E' in all following equations.

Geometrically, the symmetry can be described as a
discrete homotheticity: When we Lie drag g, b along the
vector field 8/Br by the distance 6, we obtain g,be
while T,b is mapped to T,b. The vector field along which
we Lie drag is not unique, however, because we only
consider the effect of Lie dragging the finite distance A.
We parametrize this arbitrariness by introducing a free
periodic function $o(r) into the coordinate system such
that the vector involved in the symmetry is still 8/&r.
At the same time, for clarity of presentation, we absorb 5
into the coordinate 7.. We therefore define the coordinates
in which we are going to work as

(—1~ D ). -
(14)

The sonic line is therefore the set of points where a null
geodesic touches a surface of constant g. (In general,
it would be a matter characteristic, but for our choice of
matter these are identical with the null geodesics. ) The
solution can be uniquely continued across the sonic line
when we impose analyticity. As a technical simplification,
we make use of the coordinate freedom in so by moving
the sonic line to g = 0. Then we can enforce analyticity
simply by expanding in powers of g. We find that regular
data near g = 0 can be expressed in terms of go(p) and
one more free function X+o(p), which is defined as

X+o(v) —= X(g = O, e) + I'(g = O, e).
We have now formulated a hyperbolic boundary value
problem on a rectangle with two sides identified (a finite
cylinder) in 1 + 1 dimensions. We have three indepen-
dent fields, for example, X+,X, and g. On the other hand,
there are three free functions in the boundary data, minus
one degree of freedom corresponding to translations in p,
plus 5 as the eigenvalue of the problem. By this count
we expect solutions to be locally unique, with a discrete
spectrum.

We cut the number of degrees of freedom in half by
imposing the additional symmetry Z(p + n) = ~Z(p),
with the + sign holding for a, g, and go, and the —sign
for X+ and X . It is consistent with the field equations
and Choptuik's data [12]. Moreover, Choptuik observed
that the massive scalar field has the same attractor as
the massless one considered here. The necessary and
sufficient condition for this is that @ remains bounded,
because the mass term in its stress tensor is then dominated

27T a p 1
z

' = —[(1 —a)+a(X +X )a 2
—X2 )]

It acts as a constraint, which is conserved by the four
"evolution equations" above.

For small enough g these equations define a constrained
Cauchy problem, with g playing the role of time, on the
cylinder obtained by identifying p with period 2m. . At

= —~, corresponding to r = 0, we set the boundary
conditions a = 1 (regularity of the metric) and n = 1

(coordinate condition). Expanding the field equations in

powers of e~, we find that data obeying these conditions
are determined by go(p) and one more free function

Yo(p), which is defined by the expansion

I'(V, C)
—= I'o(V) ~'"' «+ o( '«). (13)

As g increases, the Cauchy problem eventually becomes
degenerate, when D = 1. In analogy to the "sonic point"
of the ODEs describing continuously homothetic space-
times [3,11],we call this line the "sonic line. " The equa-
tion of radial null geodesics is
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by the gradient squared term as @ varies on ever smaller
spacetime scales. For @ to remain bounded its derivatives
X and F must have vanishing zero frequency Fourier
components in cp, which in turn requires that all their even
frequencies vanish, or else these could be combined to give
a zero frequency contribution in the evolution equations.
It follows in turn that a, g, and so must not have odd
frequency components.

As we are dealing with smooth periodic functions, it
is useful to decompose all fields into their Fourier com-
ponents with respect to p. Integration and differentiation
are done in Fourier components. Algebraic operations are
done in p space, which makes our algorithm pseudospec-
tral. Because of the nonlinearity of the problem, dealias-
ing turns out to be essential for stability. We dealiase
convolution sums by using a number of collocation points
in cp equal to twice the number of Fourier components.

Because the number of variables is large and the prob-
lem is nonlinear in an essential way (there are no regu-
lar solutions to the linearized, no gravity, problem), any
algorithm is likely to have only a small region of con-
vergence around any solution. We have therefore started
with an initial guess sufficiently close to Choptuik's crit-
ical spacetime. in order to establish that this solution
exists having the echoing symmetry as an exact sym-
metry, and that it is locally unique, and to calculate it
with higher precision than has been possible by fine-
tuning Cauchy data. A global search for all solutions that
may exist is desirable, but not possible with the present
algorithm.

Our manual input into the algorithm is limited to the fol-
lowing guess for Yo and 6: Yo = —2.3 sing —0.6 sin3p,
and 5 = 3.44. Here and in the following we fix the trans-
lation invariance by defining Yo to have no cosy compo-
nent. The numbers were estimated from very near-critical
collapse data made available by Choptuik [12], after trans-
formation to coordinates (g, r). In a first step, we begin
with the very rough guess &o = 0, and shoot from g = —~
towards increasing g. When D(p, g) first gets close to 1

in two points p, and X ~ is therefore about to become sin-

gular in those points, we stop the evolution and calculate
a new value of go that is designed to "fiatten" D(p), i.e.,

to make it roughly D(p) —1 for all p at that g. Then we
shoot again, thus iteratively improving so. After conver-
gence, we read off X+ at the end point of our one-sided
shooting, which by now is close to g = 0, and thus have
an initial guess for X+o as well.

As an intermediate step, we calculate an initial guess
for the values of all fields on a grid in g by shooting
from both g = —~ and g = 0 to a fitting point, typically

g = —1. This involves a Taylor expansion around the
regular singular point 0 as well as around —~. Using this
expansion and shooting from g = 0 transfers the bulk of
the error in our improving solution away from the point
g = 0 to the fitting point g = —1, making it easier for
the following step to handle.

In the last step, we go over to a standard relaxation algo-
rithm [13]. For the purpose of relaxation the independent
variables at each grid point in g are the odd Fourier com-
ponents of X+ and X and the even components of g and

a is not considered as independent, but reconstructed
at each step from the other fields by solving Eq. (12). So-
lution of this ODE is by iteration of the corresponding in-
tegral equation. (The constant component of a has to be
calculated separately. ) Between generic grid points in g
we enforce the discretized g derivatives

Z„+i
—Z„= hF [(Z„+i + Z„)/2] . (16)

(The g derivative of go is zero by definition. ) At the
boundary g = —~ we enforce relations between g, X, and
I' derived from expanding the field equations, and at g = 0
we enforce D = 1 and B = 0. The relaxation part of the
algorithm is much simpler than the shooting parts, but the
latter appear to have a larger region of convergence, thus
serving as a stepping stone.

The boundary data of the solution have been tabulated in
Table I. Inparticular, the echoingperiodis 6 = 3.4439 ~
0.0004. The error bars have been obtained combining
the results of three different convergence tests. (1) We
compare the results obtained for different numbers M of
grid points in g. As expected the convergence is quadratic,
over a wide range of M, but only up to some maximal
value. (2) The convergence of the tabulated numbers with
increasing number N of Fourier components used in the
calculation is rapid ("spectral convergence") for N ~ 32.
(3) g = —~ is represented by a finite value of P, using
a Taylor expansion to one beyond leading order in exp/.
As expected, this convergence is quadratic in exp/, over
some range of g. As long as the difference between runs
of different precision has the expected functional form, we
can use it to estimate the numerical error. The tabulated
data are from a run with M = 201 equally spaced points in
the interval —5 ~ g ~ OandN = 64 components (half of
which vanish) per function, compared with —6 ~ s' ~ 0,
M = 401, and N = 128, respectively. The three sources
of numerical error are comparable for this choice.

We have compared the fields a, n, X, and Y with Chop-
tuik's data, after interpolating to the largest rectangular
grid in r and g contained in both data sets, with —3.2 (
g ( 1.3. We have evaluated the root mean square of the
absolute difference point by point of the fields a, X, and Y
(which are bounded and of order one in the solution) and
the relative difference in n (which is unbounded above, but
bounded below by 1). After adjusting a nonuniversal off-
set in ~ between the data sets, this difference is 3.9 X 10
for u, and somewhat smaller for the other fields. By com-
parison, the estimated root mean square pointwise error in
our data is 1.6 X 10 in o. , and 1.0 X 10 or less for
the other fields. We have therefore improved the precision
with which the Choptuik spacetime is known by 1 to 2 or-
ders of magnitude, while 5 is now known to one part in
10 . Future improvements are possible.
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TABLE I. Decomposition of the boundary data in sines and cosines. Their period is 5 = 3.4439 ~ 0.0004.

Component

const
cos2p
s1n2p
cos4p
sin4p
cos6cp
sin6cp
cos8y
sin8p

coslOy
sin 10'
cos12p
sin12p
cos14p
sin14p
cos16p

(1.5813
(6.658

(—I.S77
(—2.014

(—3.3
(1.979
(2.249
(1.37

(—8.186
(—1.886

(3.6
(3.08
(1.73

(—4.05
(—1.371

(—3.05

Fo

~ 0.0007)
~ 0.006) x 10 '
~ 0.002) X 10 '

~ 0.004) x 10 '
~ 0.2) x 10
~ 0.005) x 10 '
~ 0.008) X 10 3

~ 0.01) X 10 4

~ 0.004) x 10-4
~ 0.002) x 10-4
~ 0.1) X 10
~ 0.03) x 10 '
~ 0.02) x 10 '
~ 0.09) x 10 "
~ 0.002) X 10 5

~ 0.03) x 10

Component

cosp
sing

cos3 p
sln3 p
cos5p
sin5p
cos7p
sln7 p
cos9p
sin9p

cos11p
s1n11 p
cos13%
sin 13p
cos15p
sinl5p

(—2.364
(—1.46
(—9.52
(—1.12
(—4.o6

(—7.O
(—1.73

(—3.9
(—7.3
(—2. 1

(—3.O
(—1.1

(—1.24
(—S.2

(—s.o

Yp

0a
~ 0.006)

O.OS) x IO-'
~ 0.08) X 10 '

~ 0.05) x 10
~ 0.06) X 10
~0.4) X 10 2

~ O.P4) x IP-'
~ 0.3) x 10-'
~ 0.2) x IP-'
~02) X 10 2

4 01)X10
~0.1) X 10 2

~ 0.06) x 10-'
~0.9) x 10 '
~0.2)x 10 3

(—4.3831
(—3.2287

(6.74
(1.017
(2.431

(—1.807
(—9.85
(—2.14

(1.76
(3.116
(3.97

(—1.195
(—4.05

(1.93
(1.53
(5.94

X+p

~ 0.0006) X 10
~ 0.0008) x 10
~ 0.05) X IQ
~ 0.001) X 10
~ 0.003) x 10 '
~ 0.008) x 10 '
~ 0.02) x 10 '
~ 0.02) x 10 '
~ Q.0 I) X 1Q
~ 0.005) X 10 '
~ 0.02) x 10
~ 0.005) x 10 '
~ 0.01) x 10 4

~ 0.02) x 10 4

~ 0.01) x 10-4
~ 0.06) x 10-'

'By definition, to fix translation degree of freedom.

Data files of the solution are available at
http: //www. laeff. esa.es/ —gundlach/.
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