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Models of random walks are considered in which walkers are born at one site and die at all other

sites.
function of the birth rate.

Steady-state distributions of walkers exhibit dimensionally dependent critical behavior as a
Exact analytical results for a hyperspherical lattice yield a second-order

phase transition with a nontrivial critical exponent for all positive dimensions D # 2, 4. Numerical

studies of hypercubic and fractal lattices indicate that these exact results are universal.

This work

elucidates the adsorption transition of polymers at curved interfaces.

PACS numbers: 05.50.+q, 05.20.—y, 05.40.+j

To study the dynamics governing dissipative systems
having an interface [1], we consider random-walk mod-
els in which walkers are born at one site and die at all
other sites. On the basis of numerical studies, we believe
that the critical behavior exhibited by such models is uni-
versal. Thus, we define a spherically symmetric random-
walk model for which we can obtain exact analytical
results. This model uses a one-dimensional radial lattice.
While this lattice is not translationally invariant, it is suit-
able for studying spherically symmetric boundary-value
problems in any dimension D > 0 because it faithfully
represents the spatial entropy of the system. This lattice
enables us to calculate the adsorption transition of a poly-
mer growing near an attractive boundary [2].

A random walk on a lattice is described by Cp t:m, the
probability that a random walker who begins at site m at
t = 0 will be at site n at time ¢; Cp.;m satisfies

Chnim = Z P(oc = n)Cyi-1:m > (D
{ota

ZzP(U - n)Ga,t—l

Gn, = (7l

aP(0 — n)Go,— + z Z Plo = n)Gyy—1 (n & {o}).

where {0}, is the set of sites o adjacent to n and
P(n — n') is the probability that a walker at site n will
go to n’ in one step. The initial condition is Cpom =
dnm. Local conservation of probability is expressed by
Z{a.}n P(n — 0’) =1 (all n).

We now generalize (1) to allow random walkers to be
born with birth rate a at site 0 and to die at all other
sites with uniform death rate z. Walkers are born or
die at a site in proportion to the number of walkers at
that site; a and z are the constants of proportionality.
(Note that g is a birth rate if a > 1; if a < 1, it is
really a death rate. A similar interpretation holds for z.)
Because birth and death rates apply to populations rather
than individuals, we study the distribution Gy, which
represents the number of random walkers at site n at time
t; G, obeys the same recursion relation as Cy ;;m €xcept
for factors of @ and z:

(n & {o}),
2)

{o#0},

Note that G, = 0 for all n and 7. We seek steady-state solutions of Eq. (2); the existence of such solutions imposes
a relationship between a and z. All normalizable initial distributions Gppo lead to the same large-r steady-state
behavior because a random walk is a diffusive (dissipative) process; the details of Gy are irretrievably lost as time
evolves.

To define a random walk on a D-dimensional spherically symmetric lattice [3], let site n be the region between two
concentric D-dimensional hyperspherical surfaces of radii R,,—; and R,. Site 1 is the boundary. (The general case of a
hyperspherical boundary of arbitrary radius is considered in Ref. [4].) At time ¢ walker at site n at time t — 1 moves
outward to site n + 1 with probability P,y (n) or inward to site n — 1 with probability Pi,(n). A walker at n = 1
must move outward: Py (1) = 1, Piy(1) = 0. The D-dimensional random walk in Eq. (2) is now expressed by the
one-dimensional recursion relation
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Pin(n + D)Gpt1,-1 + 2Pou(n — 1)Gp—1,-1 (n = 3),
Gn: = 1 2Pin(3)G3,—1 + aGp-1,-1 (n =2), 3)
z2Pin(2)Ga -1 (n=1).

The probabilities Poy(n) and Pji,(n) must enforce local conservation of probability: Poy(n) + Pij,(n) = 1. It is
natural to take P,y (n) and P;,(n) to be in proportion to the hyperspherical surface areas crossed at each step [3]. Thus,
if Sp(R) = 27P/2RP~!/T'(D/2) represents the surface area of a D-dimensional hypersphere, then, for n > 1,

Sp(Rn) Sp(R,—1)
Sp(Ry) + Sp(Rp—1) Sp(Ry) + Sp(Rn-1)
However, for dimensions other than D = 1 or 2, when we take R, = n the difference equation (3) cannot be solved in
closed form [5]. Thus, we proposed [6] that the probabilities in Egs. (4) be replaced by bilinear functions of n, which
are uniformly good approximations to Py (1) and Pj,(n) in the range D > 0 when R,, = n:

Poul(”) = and Pin(n) = @

P = < i == .
out (1) m+D -3 and Pin(n) D —3 (5)
This crucial simplification in Pj, and P, preserves the configurational entropy [7] and gives
Guny =172' FCEre + D = 2) dy yn—:—l(é)a""ZFl(%aﬁ;lQ” + 21y?) ©)
YT o + B Jezmi T 4 G - RGN
|
a closed-form solution of Eq. (3) for all D > 0. From The large-t asymptotic behaviors of N, and F, are

Eq. (6) we can then obtain exact closed-form expressions determined by a and z regardless of the choice of Gyp.
for the spatial and temporal moments of the random walk We obtain a generic (lattice-independent) result: The
[71. positive quadrant of the (a,z) plane is partitioned into

To study critical behavior in the random-walk models four distinct regions by boundary curves, By and B, as
in Eq. (2) or (3), we take the fraction of walkers at the shown in Fig. 1. The curve B is a straight line passing
boundary 0 (the site where random walkers are born) through the origin. To the left of B;, F;, — 0 as t — oo,
as the order parameter. Let N, = Y Gy, be the total to the right of By, F, approaches a positive finite value
number of walkers at time ¢t (N is finite so N, exists for as t — . When D = 2 the equation for the line B is
all ). Then, F; = Gy,/N, is the fraction of all random z = a; as D increases beyond 2, this line remains straight,
walkers at site 0 at time ¢. but its slope begins to decrease with increasing D. The
transition at D = 2 is a reflection of Polya’s theorem
[8], which states that when D > 2 the probability of an
B individual random walker returning to an initial site is less

1 than unity.

The left part of B, (the second boundary curve in
Fig. 1) is a line segment, z = 1, connecting the z axis
(a,z,) to the boundary line B,. The right part of B, is a curve
that approaches z = 0 as a — . The equation for the
right part depends on D. [For a D = 1 lattice, where
2 the probabilities of moving left or right are both % this
curve is given by z = 2a/(a* + 1) (a = 1).] Above B,,
N; — o as t — o; below By, N, = 0 ast — o. On B,

0 the total number of walkers approaches a finite value N(a)

0 as t — o, On the curved portion of By, N(a) > 0 for

a D > 2, while N(a) = 0 for D = 2. This transition at

FIG. 1. Generic phase diagram for the (a,z) plane. Shown Dh_. 2 is yet ?nOthe{ man ifestation of Polya S thef)rem.
in the diagram are the boundary curves B, and B,. To the The interpretation of a finite and nonzero N(a) is that the

left of By and on B, the fraction F, of random walkers at distribution Gy, approaches a steady state, where there is
site 0 approaches 0 as ¢t — o; to the right of B; this fraction a balance between random walkers being created at site 0
approaches a finite positive number as t — . Above B, the and annihilated at all other sites.

total number of random walkers, N,, diverges as t — ; below Across Bj, lim,—.. F, as t — % is continuous. We
B, the total number of walkers approaches 0 as t — ©. On B; . Lo

the distribution of random walkers approaches a steady state as focus on the behavior of this 11m¥t as we cross B, along
t — . The critical point (a.,z. = 1) lies at the intersection the boundary curve B, because it is only on B; that a

of B, and B». steady state is reached as t — . Along B;, F(a) =
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lim,— F; undergoes a second-order phase transition at
the critical point (a.,z. = 1), which is situated at the
intersection of B; and B,. On B,, F(a) = 0 where
a < a. (even though the limiting value of N, may be 0),
and both N(a) and F(a) are finite positive numbers when
a > a.. The curved portion of B, is the locus of points
in the (a, z) plane for which both N(a) and F(a) are finite
and nonzero.

The universal features of Fig. 1 follow from Eq. (2).
To determine By we change variables: Gy, = z'Hpy,.
The distribution Hy,, represents a random walk with birth
rate a/z at site 0 and no births or deaths at other sites
(death rate 1). For such a walk, let Il be the probability
that a walker at site 0 will ever return to 0. Then, of the
Hy walkers who begin at 0, only a fraction IIy of them
will return to 0 to give birth to new walkers. Of these new
walkers, again only Iy of them will return to 0, and so on.
Hence, the total number of walkers ever born is the sum
of a geometric series whose geometric ratio is ally/z. If
ally/z < 1, the geometric series converges and the total
number of walkers ever born is finite. As time ¢ increases,
the walkers diffuse away from site 0. Thus, as t — oo,
the ratio F, = Go;/>.n Gn: = Ho:/ > Hn, vanishes.
In contrast, if allg/z > 1, both Hy, and >, Hy, diverge
at the same rate and lim,— F, lies between O and 1.

The transition between F; — 0 and F, — finite limit
occurs on the line z = ally, which is the boundary line B;.
Thus, since z. = 1 for all D > 0, we find a. = 1/Il,.
Polya’s theorem (which states that for any random walk
Iy = 1 when D = 2,and IIj < 1 when D > 2) explains
the transition in the slope of the line By at D = 2.

The shape of the curved part of B, depends on the
choice of lattice and is not universal, but the straight
part of By, z = 1 (a < a.), is universal and is easy to
explain. Points (a,z) with a < a. and z near 1 lie to
the left of By. Thus, F, vanishes as t — . Hence, the
effect of the birth rate a on the total number of walkers

is negligible. The growth or decay of the total number of
walkers depends only on z; if z < 1 then lim;,—~. N, = 0,
and if z > 1 then N, — ® as r — . On the straight part
of B; the limiting value of N, depends on D. If D =2
then a, = 1. Thus, on the left part of B, a fraction
1 — a of walkers who arrive at site 0 at a given time
step must die at the next time step. But all walkers visit
site 0 repeatedly (Polya’s theorem), so N, must vanish
as t — . However, if D > 2 then IIy < 1. Thus, the
fraction 1 — Il of walkers who originate at site 0 never
return to 0. These walkers never die because z = 1.
Hence, N, approaches a positive number as ¢ — .

The form of the transition changes at D = 4. When
D < 4 the slope of Bj; is continuous, but when D > 4 an
elbow appears in B; at the critical value a.. Specifically,
when D > 4 the slope of B, is 0 for 0 = a < a.; just
above a. the slope abruptly becomes —IIy/(T — 1),
where 7 is the expected time for a walker who begins
at site 0 to return to 0 when @ = 1 and z = 1. To prove
this result [7] note that 7', the first temporal moment of
Co.:0, 1s infinite when D < 4 and finite when D > 4.
In a z = 1 model, only the fraction IIy of walkers who
leave site 0 ever return and walkers who return to 0
do so in T steps on average. Here, z # 1, so returning
walkers experience a death rate z for T — 1 of these T
steps. Thus, the expected number of walkers who actually
return to 0 is reduced by the factor z”~!. Hence, after
T steps the number of walkers at 0 is multiplied by
the factor allpz?~!. The steady-state condition is thus
allgz"~! = 1. Near the critical point a = a. + & and
z=1— € as 8,e = 0%. To first order in § > 0 and
€ > 0, the steady-state condition gives the slope of B, as
a — a}. [The above argument is only valid near a., but
the same reasoning yields the entire curve z(a) in the limit
D — o, When D = o, T = 2 and z(a) = a./al.

To determine the nature of the phase transition in
F(a) along B;, we let gp = lim;— Gp,. The steady-state

| distribution gp satisfies the difference equation

2> P(o = n)g,

_ {oh
&n =

aP(0 —mn)gy +z ». P(oc —mn)g, @ € {oh),

(n & {o}o),
@)

{oc#0},

which is the time-independent version of Eq. (2). For a
steady-state solution having a finite number of walkers,
the sum >, gn exists and is nonzero. Summing Eq. (7)
over all sites gives >, gn = (@ — 2)g0 + 7 D.n &n, from
which we obtain F(a) in terms of a and z(a):

{0 1 — z(a)

Fla) = g8 = - —25 ®)

Equation (8) is valid on the curved part of B and on the
straight part of B, when D > 2. Note that on B, we regard
z as a function of @ and treat F' as a function of a only.
We have studied Eq. (7) for several types of lattices.
We have found that along the curve B, the steady-
state distribution fraction F(a) behaves like F(a) ~
C(D)(a — a.)” asa — a} (D # 2,4). The multiplica-
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| tive constant C(D) depends on the specific choice of lat-
tice. However, the critical exponent v is universal and
only depends on the dimension D. Using the probabili-
ties in Eq. (5) for the hyperspherical lattice, we derive [7]

D/2 — D) (0<D <?2),
v = {2/(D —2) (2<D<4), )
1 (D > 4).

We have verified that the second-order phase transition
at a. is universal by computing » numerically for three
types of random walks not analytically tractable: (i) a
spherically symmetric random walk using the probabilities
in Egs. (4), (ii) a conventional random walk on a D = 3
cubic lattice, and (iii) a random walk on a fractal lattice
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FIG. 2(color). Plot of the adsorption fraction P(«).

For increasing D < 2, the scaling exponent increases and the transition

becomes weaker until at D = 2 exponential scaling is obtained. For increasing D > 2, the scaling exponent decreases and the
transition becomes stronger again; this is accompanied by an increase in the critical binding potential x required to cause the
transition. At D = 4 we observe a tricritical point with logarithmic scaling. For D > 4 to transition is first order, indicated by
discontinuity (green shaded region) in P(x) across the critical point.

(Sierpinski carpet) and [9] with dimension D =
In12/1n4. Numerical agreement between the predicted
value of v in Eq. (9) and that obtained by computer
simulation provides strong evidence of universality.

There is no critical exponent for the special cases
D = 2, 4; for the case of a spherically symmetric random
walk using the probabilities in Eq. (5), we find that [7] as

+
a—a, @ %)% e ?/a=a) (p = 2),
a) ~ a—a,
12In(1) (D =4).

This work can be applied to the study of polymer
growth in the vicinity of an attractive boundary [10]. For
a hyperspherical boundary of radius m, this phenomenon
is described by a partial difference equation of the same
form as that in Eq. (7) [5]. If P(k) represents the fraction
of a polymer that is adsorbed as a function of the attractive
boundary potential «, this fraction is analogous to F(a) in
Eq. (8). The potential « is a monotonic function of the
birth rate a, and near the critical point [4]

P(k) —dzl(a) ~ C(D)(a — a.)”. (1)

We findthat v/ = v (D <2)and v/ = v — 1 (D > 2),
where v is given in Eq. (9). Thus, the polymer adsorption
fraction P(k) exhibits a first-order transition for D > 4
and a tricritical point with logarithmic scaling at D = 4.
This behavior for P(«) is illustrated in Fig. 2.

The analysis in this paper allows us to make a physical
prediction for systems where excluded-volume effects can
be neglected: The adsorption fraction for a solution
of polymers growing near an approximately spherical

(10

attractive boundary (such as a cell membrane) exhibits a
second-order phase transition with linear scaling.
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FIG. 2(color). Plot of the adsorption fraction P(k). For increasing D < 2, the scaling exponent increases and the transition
becomes weaker until at D = 2 exponential scaling is obtained. For increasing D > 2, the scaling exponent decreases and the
transition becomes stronger again; this is accompanied by an increase in the critical binding potential x required to cause the
transition. At D = 4 we observe a tricritical point with logarithmic scaling. For D > 4 to transition is first order, indicated by
discontinuity (green shaded region) in P(x) across the critical point.



