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Universality in Random-Walk Models with Birth and Death
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Models of random walks are considered in which walkers are born at one site and die at all other
sites. Steady-state distributions of walkers exhibit dimensionally dependent critical behavior as a
function of the birth rate. Exact analytical results for a hyperspherical lattice yield a second-order
phase transition with a nontrivial critical exponent for all positive dimensions D 4 2, 4. Numerical
studies of hypercubic and fractal lattices indicate that these exact results are universal. This work
elucidates the adsorption transition of polymers at curved interfaces.

PACS numbers: 05.50.+q, 05.20.—y, 05.40.+j

To study the dynamics governing dissipative systems
having an interface [1], we consider random-walk mod-
els in which walkers are born at one site and die at all
other sites. On the basis of numerical studies, we believe
that the critical behavior exhibited by such models is uni-
versal. Thus, we define a spherically symmetric random-
walk model for which we can obtain exact analytical
results. This model uses a one-dimensional radial lattice.
While this lattice is not translationally invariant, it is suit-
able for studying spherically symmetric boundary-value
problems in any dimension B ) 0 because it faithfully
represents the spatial entropy of the system. This lattice
enables us to calculate the adsorption transition of a poly-
mer growing near an attractive boundary [2].

A random walk on a lattice is described by C„,.m, the
probability that a random walker who begins at site I at
t = 0 will be at site n at time t; C„, satisfies

where (o.j„is the set of sites tT adjacent to n and
P(n ~ n') is the probability that a walker at site n will

go to n in one step. The initial condition is C„o6„.Local conservation of probability is expressed by

gl 1 P(n ~ o.) = 1 (all n).
We now generalize (1) to allow random walkers to be

born with birth rate a at site 0 and to die at all other
sites with uniform death rate z. Walkers are born or
die at a site in proportion to the number of walkers at
that site; a and g are the constants of proportionality.
(Note that a is a birth rate if a ) 1; if a ( 1, it is
really a death rate. A similar interpretation holds for z.)
Because birth and death rates apply to populations rather
than individuals, we study the distribution G„,, which
represents the number of random walkers at site n at time
t; G„,obeys the same recursion relation as C„,. except
for factors of a and g:

Cn, t;m
= P P(tr n)~, t-i;

(~).

zgP(tT ~ n)G

aP(0- n)Go. . + z P P(~ - n)G. . .
(~coj„

(n & f~)o) ~

(n & (~)o)

Note that G„,~ 0 for all n and t. We seek steady-state solutions of Eq. (2); the existence of such solutions imposes
a relationship between a and z. All normalizable initial distributions G„olead to the same large-t steady-state
behavior because a random walk is a diffusive (dissipative) process; the details of G„oare irretrievably lost as time
evolves.

To define a random walk on a D-dimensional spherically symmetric lattice [3], let site n be the region between two
concentric D-dimensional hyperspherical surfaces of radii R, ~ and R„.Site 1 is the boundary. (The general case of a
hyperspherical boundary of arbitrary radius is considered in Ref. [4].) At time t walker at site n at time t —1 moves
outward to site n + 1 with probability P,„,(n) or inward to site n —1 with probability P;„(n) Awalker at n = . 1

must move outward: P,„,(1) = 1, P;„(1)= 0. The D-dimensional random walk in Eq. (2) is now expressed by the
one-dimensional recursion relation
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zP;„(n + 1)G„+t, t + zP,„&(n —I)G„ t, t (n ~ 3),
G„,= - zP; (3)G3,g

—i + « —i, ,—i (n =2), (3).zP. (2)G2,~-t (n = 1).
The probabilities P,„&(n)and P;„(n)must enforce local conservation of probability: P,„,(n) + P;„(n)= l. It is

natural to take P,„,(n) and P;„(n)to be in proportion to the hyperspherical surface areas crossed at each step [3]. Thus,
if SD(R) = 2nD~ RD '/I (D/2) represents the surface area of a D-dimensional hypersphere, then, for n ) 1,

P;„(n)=
S (R„) 5'a(R. -t)P,„,n and (4)sD(R„)+ sD(R„ t) S~(R„)+ S~(R„ t)

However, for dimensions other than D = 1 or 2, when we take R„=n the difference equation (3) cannot be solved in
closed form [5]. Thus, we proposed [6] that the probabilities in Eqs. (4) be replaced by bilinear functions of n, which
are uniformly good approximations to P,„,(n) and P;„(n)in the range D ) 0 when R„=n:

n+D —2 n 1
P,„,(n) = P;„(n)=and2n+D —3 2n+D-

This crucial simplification in P;„andP,„,preserves the configurational entropy [7] and

, I ( )I (n + D —2) dy „,, (-,') '"2Fi(' 2.— 1.(D)r(n + 2 ) c 2vriy 1+ (—' —I)zFt(z,

3
gives

D —1 2)
D+1

2)
(6)

a closed-form solution of Eq. (3) for all D ~ 0. From
Eq. (6) we can then obtain exact closed-form expressions
for the spatial and temporal moments of the random walk
[7].

To study critical behavior in the random-walk models
in Eq. (2) or (3), we take the fraction of walkers at the
boundary 0 (the site where random walkers are born)
as the order parameter Let N, =. Q„G„,be the total
number of walkers at time t (No is finite so N, exists for
all t). Then, F, = Grt, /N, is the fraction of all random
walkers at site 0 at time t.

FIG. 1. Generic phase diagram for the (a, z) plane. Shown
in the diagram are the boundary curves B& and Bz. To the
left of BI and on BI, the fraction F, of random walkers at
site 0 approaches 0 as t ~ ~; to the right of B~ this fraction
approaches a finite positive number as t ~ ~. Above B2 the
total number of random walkers, N„diverges as t ~ ~; below
B2 the total number of walkers approaches 0 as t ~ ~. On B2
the distribution of random walkers approaches a steady state as
t ~ ~. The critical point (a„z,= 1) lies at the intersection
of B~ and B2.

The large-t asymptotic behaviors of N, and F, are
determined by a and z regardless of the choice of G„o.
We obtain a generic (lattice-independent) result: The
positive quadrant of the (a, z) plane is partitioned into
four distinct regions by boundary curves, B& and B2, as
shown in Fig. 1. The curve B~ is a straight line passing
through the origin. To the left of B~, F, 0 as t
to the right of B~, F, approaches a positive finite value
as t ~ ~. When D ~ 2 the equation for the line B& is
g = a; as D increases beyond 2, this line remains straight,
but its slope begins to decrease with increasing D. The
transition at D = 2 is a reAection of Polya's theorem
[8], which states that when D ) 2 the probability of an
individual random walker returning to an initial site is less
than unity.

The left part of B2 (the second boundary curve in
Fig. 1) is a line segment, z = 1, connecting the z axis
to the boundary line B&. The right part of B2 is a curve
that approaches g = 0 as a ~ ~. The equation for the
right part depends on D. [For a D = 1 lattice, where
the probabilities of moving left or right are both 2, this
curve is given by z = 2a/(a2 + 1) (a ~ 1).] Above Bz,
N, ~as t~~;belowB2, N, Oasl ~~. OnB2
the total number of walkers approaches a finite value N(a)
as t ~ ~. On the curved portion of B2, N(a) ) 0 for
D ~ 2, while N(a) = 0 for D ~ 2. This transition at
D' = 2 is yet another manifestation of Polya's theorem.
The interpretation of a finite and nonzero N(a) is that the
distribution G„,approaches a steady state, where there is
a balance between random walkers being created at site 0
and annihilated at all other sites.

Across B~, lim, F, as t ~ is continuous. We
focus on the behavior of this limit as we cross 8[ along
the boundary curve B2 because it is only on B2 that a
steady state is reached as r ~ ~. Along B2, F(a) =—
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is negligible. The growth or decay of the total number of
walkers depends only on z, if z ( 1 then lim, N, = 0,
and if z ) 1 then N, ~ ~ as t ~ ~. On the straight part
of B2 the limiting value of N, depends on D. If D ~ 2
then a, = 1. Thus, on the left part of B2 a fraction
1 —a of walkers who arrive at site 0 at a given time
step must die at the next time step. But all walkers visit
site 0 repeatedly (Polya's theorem), so N, must vanish
as t oo. However, if D & 2 then IIO ( 1. Thus, the
fraction 1 —IIO of walkers who originate at site 0 never
return to 0. These walkers never die because z = 1.
Hence, N, approaches a positive number as t ~ ~.

The form of the transition changes at D = 4. When
D ( 4 the slope of B2 is continuous, but when D ) 4 an
elbow appears in B2 at the critical value a, . Specifically,
when D ~ 4 the slope of B2 is 0 for 0 ~ a ( a, ; just
above a, the slope abruptly becomes —IIp/(T —1),
where T is the expected time for a walker who begins
at site 0 to return to 0 when a = 1 and z = 1. To prove
this result [7] note that T, the first temporal moment of
Co, .o, is infinite when D ( 4 and finite when D & 4.
In a z = 1 model, only the fraction IIO of walkers who
leave site 0 ever return and walkers who return to 0
do so in T steps on average. Here, z 4 1, so returning
walkers experience a death rate z for T —1 of these T
steps. Thus, the expected number of walkers who actually
return to 0 is reduced by the factor z '. Hence, after
T steps the number of walkers at 0 is multiplied by
the factor aIIoz '. The steady-state condition is thus
aIIoz ' = 1. Near the critical point a = a, + 6 and

z = 1 —e as 6,e ~ 0+. To first order in 6 ) 0 and
t ) 0, the steady-state condition gives the slope of B2 as
a ~ a+. [The above argument is only valid near a„but
the same reasoning yields the entire curve z(a) in the limit
D ~ ~. When D = ~, T = 2 and z(a) = a, /a].

To determine the nature of the phase transition in

F(a) along B2, we let g„=lim, G„,. The steady-state
distribution g„satisfies the difference equation

(n & [~)p).Po ~ng
(~)

gn = "
aP(0 n)gp + z g P(rr n)g

(cr 40)„

(7)
(n C (a-)p),

lim, F, undergoes a second-order phase transition at
the critical point (a„z,= 1), which is situated at the
intersection of B~ and B2 . On B2, F(a) = 0 where
a & a, (even though the limiting value of N, may be 0),
and both N(a) and F(a) are finite positive numbers when
a ) a, . The curved portion of B2 is the locus of points
in the (a, z) plane for which both N(a) and F(a) are finite
and nonzero.

The universal features of Fig. 1 follow from Eq. (2).
To determine Bj we change variables: G„,= z'H„,.
The distribution H„,represents a random walk with birth
rate a/z at site 0 and no births or deaths at other sites
(death rate 1). For such a walk, let IIp be the probability
that a walker at site 0 will ever return to 0. Then, of the

Hop walkers who begin at 0, only a fraction IIO of them
will return to 0 to give birth to new walkers. Of these new
walkers, again only IIO of them will return to 0, and so on.
Hence, the total number of walkers ever born is the sum
of a geometric series whose geometric ratio is aIIp/z. If
aIIp/z ( 1, the geometric series converges and the total
number of walkers ever born is finite. As time t increases,
the walkers diffuse away from site 0. Thus, as t ~ ~,
the ratio F, = Gp, / g„G„,= Hp, / g„H„,vanishes.
In contrast, if aIIp/z ) 1, both Hp, and g„H„,diverge
at the same rate and lim, F, lies between 0 and 1.

The transition between F, ~ 0 and F, ~ finite limit
occurs on the line z = aIIp, which is the boundary line B&.
Thus, since, = 1 for all D ) 0, we find a, = 1/IIp.
Polya's theorem (which states that for any random walk
IIp = 1 when D ~ 2, and IIp & 1 when D ) 2) explains
the transition in the slope of the line B] at D = 2.

The shape of the curved part of B2 depends on the
choice of lattice and is not universal, but the straight
part of Bz, z = 1 (a ( a, ), is universal and is easy to
explain. Points (a, z) with a ( a, and z near 1 lie to
the left of B]. Thus, F, vanishes as t ~ ~. Hence, the
effect of the birth rate a on the total number of walkers

which is the time-independent version of Eq. (2). For a
steady-state solution having a finite number of walkers,
the sum g„g„existsand is nonzero. Summing Eq. (7)
over all sites gives g„g„=(a —z)gp + z g„g„,from
which we obtain F(a) in terms of a and z(a):

F(a) = = . (8)
gp 1 —z(a)
ngn a —za

Equation (8) is valid on the curved part of Bz and on the
straight part of B2 when D ~ 2. Note that on B2 we regard
z as a function of a and treat F as a function of a only.

We have studied Eq. (7) for several types of lattices.
We have found that along the curve B2 the steady-
state distribution fraction F(a) behaves like F(a)—
C(D) (a —a, )' as a ~ a,+ (D 4 2, 4). The multiplica-

tive constant C(D) depends on the specific
tice. However, the critical exponent v is
only depends on the dimension D. Using
ties in Eq. (5) for the hyperspherical lattice,

D/(2 —D) (0 ( D (
v = - 2/(D —2) (2 & D &.1 (D ) 4).

choice of lat-
universal and
the probabili-
we derive [7]
2),
4),

We have verified that the second-order phase transition
at a, is universal by computing v numerically for three
types of random walks not analytically tractable: (i) a
spherically symmetric random walk using the probabilities
in Eqs. (4), (ii) a conventional random walk on a D = 3
cubic lattice, and (iii) a random walk on a fractal lattice
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