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We describe the representation of arbitrary density operators in terms of expectation values of
simple projection operators. Two representations are presented which yield nonrecursive schemes
for experimentally determining the density operator of any quantum system. We suggest a possible
experimental implementation in quantum optics.
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In the realm of quantum theory a state of a physical
system is most generally expressed by its density operator
g. Knowledge of this operator gives complete informa-
tion of the quantum state. Schemes have been proposed
in a number of fields in quantum physics to determine g
from measurements either explicitly [1—7] or indirectly
via quasiprobability distributions [8—11] for mixed states
and also for pure states only [12,13].

In this Letter we describe a general method of repre-
senting any density operator g in terms of expectation
values of simple projection operators. Since the expecta-
tion values of projectors can, in principle, be determined
experimentally, this approach leads to schemes for exper-
imentally determining the density operator.

Our approach differs from previously proposed
schemes in quantum optics for determining the density
operator in its use of simple projectors which project onto
a single or a linear superposition of two basis states [2,5].
We place an emphasis on a "minimalistic" representation
which comprises the least number of projection operators
and thus leads to the most efficient scheme; it is a
generalization of the previous considerations in [2,5].

The plan of the paper is as follows. First we introduce
the general idea of our approach, then we cast it into two
specific representations and describe their relative virtues.

We next describe a quantum optical implementation, and
we end with a discussion.

Let us assume that the Hilbert space representing the
states of the physical system is of countable dimension N,
and let ~m) for m = 1, . . . , N be any conveniently chosen
orthonormal basis of the space. In cases where the space
is infinite in dimension, all expressions containing N here
and in the following are infinite also. Our primary aim is to
represent the N —1 independent density matrix elements
g„= (n ~ g ~ I) in terms of the expectation values of
simple projection operators. Clearly the matrix elements
cannot be expressed solely in terms of the N —1 indepen-
dent expectation values g = (~m) (m)) of the set of the
N base state projectors ~m) (m~ because the vital phase in-
formation of the coherences, i.e., the complex nature of the
off-diagonal elements g„ for n 4 m, cannot be derived
from the diagonal elements alone.

The simplest possible generalization of the base state
projectors is given by the set of projection operators
which project onto linear combinations of tvvo base
states, e.g. , onto ct~n) + cz~rn). The expectation value
of such projectors represents the phase information of the
coherences in its most elementary form. We show that
one can express g in terms of expectation values of such
projectors and how to implement it quantum optically.
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Two representations. —For simplicity let us consider
the (ln), Im)J subspace which is spanned by any two basis
vectors ln) and lm) for n 4 m and define the state

Ia) =—N, (ln) + aim)),

8 —= lb)(bl (2)

until later.
Let us assume the measurements yielding the expecta-

tion values of the projectors I n) (n I, Im) (m I, A, and 8 have
been performed [14]. The first two expectation values are
simply the diagonal elements g„„and g . We can com-
bine these expectation values conveniently as

M~.&

——Tr(jA) —N.'(g,„+ lal'g )
= N, (ag, + a*@ „), (3)

where Tr is the trace operation and M~, &
stands for the

result associated with a measurement of the projector A.
A corresponding expression is obtained for the result M~b&

associated with the projector B. Let us write g„ in terms
of its real and imaginary parts g„= R + i J, and let us
define

Mi &

m~, &

— = R coso. —1 sinn,
2!alN.'

M(b&
m~i,

&

—=
2

= R cosP —J sinP .
2lblNÃ

Solving these equations for R and J yields

t R& 1 ( sinp —sjna & (m~, &&

l J ) sin(p —n) l cosp —cosn ) gm~t, &)

I &

i'm. l
(&)

(m(b&)
Clearly this requires P —a 4 k~, where k is any
integer. This gives the only restriction on the values
of a and b aside from the trivial requirement that a 4
0 4 b. Applying the outlined procedure to the (ln), lm))
subspaces for 1 ~ n ( m ~ N allows us to represent

g in terms of expectation values of N —1 different
projectors, due to the condition Trg = 1. Note that this
scheme is intrinsically nonrecursive.

We call this the "minimal" representation as it requires
this least possible number of projection operators to
represent a general density operator and also because
it puts almost no restrictions on the states forming the
projectors, namely, on the coefficients a and b of Eq. (1).

(4)

where N, = 1/Ql + lal2 is a normalization constant and
a = lale' is a nonzero coefficient. A corresponding
nomenclature is used for a second, different state of
the same subspace lb) = Ni, (ln) + blm)), where b =
lb!e'P 4 a. We defer making any further restrictions on
the values of a and b, to guarantee independence of the
expectation values of the corresponding projectors

A —= Ia) (al,

(ln) ~ tlm)),
1

2
(7)

for n, m = 1,2, . . . , ¹ We mention in passing that
all such states are normalized except for n = m

for which Ia+") = ~2!n) and Ia""),Ib"") =—0. The
set (Ia" ), Ib" ):m, n = 1, . . . , N j is an overcom-
plete basis of the Hilbert space. Let the projection
operators [16] which project onto these states be
A™—- Ia" ) (a"I

I, 8" =—Ib" ) (b" I, defined in anal-

ogy to Eq. (2). The expectation values of the 2N —N
different projectors [17] for n ~ m suffice to represent an
arbitrary matrix element of g as

g „=Tr(g @[A+ —A" + i(B+ —8™)], t(8)
a form that has already been derived in [2,5]. Now the
projectors can be combined to form operators R™and
J' defined as

R" —= (A+ —A" )/v2 = (In)(ml + Im)(nl)/v 2,
J —= (8+ —8' )/v2 = i(ln)(ml + Im)(nl)/K2,

fulfilling the orthogonality relations

Tr(R" R"~ t= (6„p6 q + 6„,6 p),

Tr(J' J"~ t = (6„„6 q
—B„q8 p),

Tr(R" J&&) = 0 (10)

Though mathematically satisfactory, the minimal rep-
resentation would be sensitive to experimental errors in
a physical implementation. This sensitivity, however, is
minimized using sensitivity optimized states, i.e., choosing
Ial = Ibl = 1 and b = ~ia [1S]. This sensitivity can
be further reduced employing three or more (redundant)
states. Let us, for example, look at the case of one more
projector state Ic) =— N, (ln) + elm)), where c = Icle'~
in each (n, m) subspace. We find that

m~, &sin(p —y) —
m~i, &sin(n —y)

m~, &

= '
. , (6)

where m~, &
is given by Eqs. (3) and (4) with lb) replaced

with
I c). Provided the differences n —y, p —y, and

n —p between the phase angles of the states la), lb),
and lc) are not multiples of n, the overparametrization
introduced by the extra state can be used to reduce
the effect of experimental errors. For example, one
could estimate true values of mI &, m~b&, and m~, &

as
the point (x, y, z) on the surface z(x, y) = [x sin(p-
y) —

y sin(n —y)]/sin(P —n) which is closest to the
point (x, y, z), where x, y, and z are the experimentally
measured values of m~, &, m(b), and ml, ).

One may still go one step further and consider the
particular quadruplet of states
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for n, m, p, q = 1, . . . , N, where 6 is the Kronecker
delta. The set iR ",J ":n ( m) constitutes a complete
basis set of N operators. This operator basis gives a
unique expansion of any operator Q as

f N m —1

Q = v 2 P g r„ R " + j, J
N

+ Pr (11)
2 —]

source

la&(al

2

with r„=TriQR ")j~2 = (Q „+Q„)j2 andj„=Tr(QJ ")/~2 = (Q „—Q„)ij2. If Q is a
Hermitian operator r„and j are the real and imaginary
parts of the matrix elements, Q„=—(nlQlm).

Fano introduced the idea of expanding the density ma-
trix in terms of an orthogonal operator basis [1], hence
we call this an "operator basis" representation. We in-
troduced this representation for its mathematical proper-
ties rather than its physical contents. Let us note that the
sensitivity optimized states mentioned before Eq. (6) can
analogously be cast into this kind of orthogonal opera-
tor basis, in this sense the operator basis representation is
contained in the minimal one.

Quantum optical realization. —Next we describe a pos-
sible experimental scheme for the reconstruction of a den-

sity operator describing the state of a single optical field
mode [18]. It is a straightforward matter to generalize this
to several optical modes. We use the Fock state basis in
which the numbers of photons in the mode under consid-
eration label the states (l m): m = 0, 1, 2, . . .). Our task is
to show that the expectation values of the corresponding

A A

projection operators A",A, etc. can be obtained experi-
mentally. We note from the outset that the experimentally
difficult part of the scheme at present is the preparation of
coherent superpositions of two Fock states. However, in
light of recent theoretical [19,20] and experimental results
[21], it is clear that the problem of the preparation of the
probe field can and will be solved.

Thus, since this is not a fundamental difficulty, we
assume in the following that such superposition states are
available.

The expectation value of the projection operators in the
representations can be determined using the experimental
setup depicted in Fig. 1 as follows.

A probe field is prepared in a particular state lP)
and fed into port 1 of the beam splitter, the signal field
prepared in the (unknown) state g is fed into port 2.
The joint photon number probability distribution of the
output ports of the beam splitter is obtained from the
photoelectron statistics produced in the photodetectors I
and II for many repetitions of the experiment; let us
note that multiphoton coincidence counts together with
quantum efficiencies above 70% have been demonstrated
experimentally [22,23]. If one chooses a method that
detects single photons with more than 50% quantum
efficiency, the photon number probability distribution can

FIG. 1. The setup of our proposed quantum optical scheme.
Light from a common field source is fed into a device
generating the probe field la) (al and a device that generates the
signal field g. The probe and signal field, which are labeled l
and 2, respectively, are then entangled at the last beam splitter
and analyzed by the photodetectors I and II. The use of a
common source ensures that the probe and signal fields oscillate
at the same frequency.

P~,„.)(p, N + n —p) = C(a'i@la'), (14)

be recovered from the measurements using the inverse
Bernoulli transformation discussed by Lee [24].

Furthermore, a new method developed by Munroe
et al. [25] allows us to measure the photon-number sta-
tistics from the phase-averaged quadrature-field distribu-
tion with single photon and ultrahigh time resolution of
the order of 300 fs. Employing the corresponding recon-
struction schemes [26], this method yields almost perfect
photon number statistics.

Hence we may restrict our considerations to the "true"
joint photon probability distribution P~~)(p, q) for p and

q photons measured by (ideal) photodetectors I and II,
respectively, which is given by

s+v s+q
P~p)(p, q) = g P (n'lglm')

n'=0 m'=0

x (p + q
—n'lP)(pip + q

—m')

X A„(n', p + q —n')A*„(m', p + q
—m') .

(12)

Here A„(v, p, ) represents the probability amplitude of
finding mode I in the Fock state lp)t if modes 1 and 2
are in the product Fock state l v)] lp, )2 and is given by

( ) ( 1)v P ( + P) iy, (P —P)eicPv(P —v)

v]p, ]

fvi (p,
( 1)k &p+k —l v —&+le«r «r

(13)

where ~ and p are the transmittance and reflectance and
and p~ are the corresponding phase factors generated

by the beam splitter as defined by Campos, Saleh, and
Teich in Ref. [27]. Inserting for lP) the special probe
field states la" ) with n ) m, see Eq. (1), and relabeling

p + q = N + n = M + m changes Eq. (12) into
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where

la') = C '/ [A*„(N, n)N lN) + A*(N, n)N a'lM)],

C = lA„(N, n)Nal + lA„(N, n)Naal . (15)

Again we assume that the diagonal elements are known,
for example, by the comparatively simple measurement of
the photocount distribution of the field alone. The same
is assumed to be true for a, which is known from the state
preparation process, we can thus, equivalently to Eq. (3),
use P~, -&( p, N + n —p) to determine a quantity

M~;-)(N, p) =— 2 Re(a @Mt' A„(M, m)A„*(N, n)), (16)
where "Re" signifies the real part. Using a second
linearly independent probe state lb™),by a procedure
analogous to Eqs. (4) and (5) we obtain @Mt'. Thus
we have translated the minimal representation into an
experimental scheme in quantum optics for determining
the quantum state of light; the translation of the other
representations along similar lines is straightforward.

It is interesting to note that the value of p in Eq. (14)
can be chosen arbitrarily from the interval (0 ~ p ~
N + n) This giv. es N + n + 1 different ways of deter-
mining the value of the quantity M~„-&(N, p) in Eq. (16).
Also, since we require n —m = M —N in Eq. (14)
the set of matrix elements g(k+Jv M)t- for k = 0, 1, 2, . . .
can be determined from just two probability distributions
Pl, .-~ and P~g-~ for fixed values of n and m. And fi-

nally, since it is only the difference n —m that de-
cides which set of matrix elements are determined, this
implementation is also redundant in the sense that the
probe states la") with s = t + n —m are equivalent for
t =0, 1,2. . ..

This scheme will give as many matrix elements of
the density operator as desired and is limited only by
experimental error and the ability to prepare the probe
field in suitable two-I ock-state superpositions.

We examined the requirements for representing any
density operator in terms of expectation values of simple
projection operators. We gave two different representa-
tions: the minimal representation, which requires the least
number of projectors, and the operator basis representa-
tion, which gives the expansion of any operator in terms
of an operator basis. Our results are applicable to any
physical system whose state space is of countable dimen-
sion N which need not be finite.

We showed how the expectation values could be
determined experimentally for the case of a single mode
of an optical field. An important point about our method
is that it is not recursive, in contrast to some other
methods for determining the density operator of the
optical field [6,12,13] for which the calculation of all
but a select few matrix elements involves the previously
calculated values of other matrix elements and results in
the accumulation of experimental errors.
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