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Usually, diffusive coupling of nonlinear oscillators in one dynamical variable leads to synchronization

of oscillators.

in voltage, counterintuitively, leads to dephasing of oscillators.
under which dephasing through diffusive interaction will occur.

We study a model of coupled neural oscillators in which simple diffusive coupling

We examine the general conditions
We show that such systems with

dephasing limit cycles lead to a new burstinglike behavior: oscillators switch between high and low
oscillation amplitude. This occurs because the interaction is such that oscillators tend to synchronize
for sufficiently small oscillation amplitude, while they tend to desynchronize once their oscillation

amplitude has become large.
PACS numbers: 87.10.+e, 05.45.+b, 82.40.Bj

The study of coupled oscillators is one of the funda-
mental problems in theoretical physics with applications
in many different fields [1]. Recently, this field has seen
renewed interest due to the possible role of coupled oscil-
lator systems in neural processing [2]. Neurophysiological
measurements in a variety of settings have shown stimulus-
dependent synchronization and desynchronization of
oscillatory activity in various cortical systems [3-5].
In theoretical studies of the dynamics of coupled oscillator
systems, it is rather straightforward to obtain synchroniza-
tion of oscillations through excitatory couplings. There
is considerably more debate as to what causes such oscil-
lator systems to desynchronize again. The mechanisms
proposed and studied include time delayed interactions
[6,7], dephasing through chaotic rather than periodical
oscillators [8], fast-changing synaptic coupling [9], noise
[10—12], and changes of excitability [13].

Recently, Sherman and Rinzel [14] observed dephasing
and antiphase phase locking in simulations of two diffu-
sively coupled neurons, but did not provide a satisfactory
explanation for this effect. In this paper, we discuss the
general conditions under which diffusive coupling in one
dynamical variable can lead to dephasing of limit cycle
oscillators. (The word diffusive is taken from the lan-
guage used in the study of coupled chemical oscillators.
In this context, it just refers to the fact that interacting
oscillators adjust their interacting dynamical variables to-
ward each other.) For a model system of coupled neurons,
we show that simple transmembrane voltage coupling be-
tween large numbers of simple two-dimensional limit cy-
cle oscillators may alone suffice to periodically generate
synchronous oscillations, and subsequently destroy the co-
herency again.

Our studies are based on the Morris-Lecar system
[15]. The Morris-Lecar system is a simplified version
of the Hodgkin-Huxley system [16] using only two
dynamical variables v and w instead of four dynamical
variables in the Hodgkin-Huxley model. Nonetheless, it
exhibits most of the dynamical features of the Hodgkin-
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Huxley model, including stimulus-dependent excitability
and oscillatory behavior. Compared to the Bonhoeffer—
van der Pol model [17], it has more parameters which
allows reproduction of a greater variety of dynamical
modes of the Hodgkin-Huxley model, while still offering
the simplicity of a two-dimensional system. The Morris-
Lecar system is written down as

Z_I: = — Zcamx(v) (v — 1) — gxw(v — vi)
— & (v —v)+1, (D
dw [We(v) — w]
a e ?
with
ms(v) = 0.5[1 + tanh{(v — vy)/v2}], 3)
wo(v) =0.5[1 + tanh{(v — v3)/va4}], (4)

Tw(v) = 1/ cosh{(v — v3)/(2v4)}. (5
v can be thought of as the transmembrane voltage of the
neuron, while w represents its recovery variable and 7
is the excitation current. When not specified otherwise,
we use v, = —0.01, v, = 0.15, vy = 0.1, vq4 = 0.145,
gca = 1.0, gk = 2.0, gL = 0.5, vk = —0.7, vy =
—0.5, and f = 1.15 throughout this study.

This system has been extensively studied and character-
ized by Rinzel and Ermentrout [18]. At very low or very
high values of the stimulation current 7, it has a single sta-
ble fixed point. At intermediate values of the stimulation
current, a stable limit cycle can appear through a Hopf bi-
furcation, a heteroclinic connection, or a homoclinic con-
nection. For the above-indicated parameter values, the
limit cycle of the system arises at I = 0.0730 through a
homoclinic connection, as can be seen in Fig. 1.

We are interested in the behavior of large coupled
ensembles of such oscillatory systems. In order to
describe the effect of coupling between one oscillator
i and all N other oscillators, we modify Eq. (1) by
adding a linear voltage-coupling term % Z;-V:l k(v; — vy).
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FIG. 1. Bifurcation diagram showing the voltage as a function
of the excitation current /. For I}, < I < [, a stable stationary
point, a saddle point, and an unstable stationary point coexist.
At I, a stable limit cycle appears through a homoclinic
connection at the saddle point. At /3 an unstable limit cycle
bifurcates out of the unstable stationary point, and disappears
together with the stable limit cycle at Is. At I, the lower
stationary point and the saddle point disappear via a saddle-
node connection. [I; = —0.0207, I, = 0.0730, I3 = 0.0756,
Iy = 0.0833, and I5s = 0.0845.

For the homoclinic limit cycle obtained for our standard
parameters, we find analogous to Sherman and Rinzel’s
results [14] that diffusive coupling in v space between
two oscillators on the limit cycle will actually lead to a
relative dephasing of their oscillations.

Following [1], we can express the motion of a phase-
space vector X = (v, w) of a system along a limit cycle
by a phase variable ¢ which can be extended to any other
phase-space point X using the concept of isochrones.
Xo(¢) then denotes the point on the limit cycle with
phase ¢. The interaction of two oscillators, ¢ and ¢,
can then be quantified by considering the evolution of
their phase difference §¢ = (| — ¢2). In the limit of
weak interactions, the average relative phase shift can be
expressed as

D5 =T(5¢) = J—fzﬂ Z(d"p(d'.5$)d'. (6)
Jat 2@ J pr=0 p ’ ’

where p(¢',6¢) = p(Xo(d'),Xo(ep! + 5¢)) describes
the rate of change of the state vector X of an oscillator
due to interaction with another oscillator ahead by a phase
difference of 8¢, and the sensitivity function Z(¢) =
(grady ¢)x=x,(4) gives the change of phase along the limit
cycle caused by the change of X.

In Fig. 2(a), we plotted the value of the integrand
of Eq. (6) as a function of t = ¢' for §¢ = 0.0017
and k = 1. During a limit cycle period, the interaction
alternately causes the phase difference 6 ¢ to increase or
decrease, where the increase dominates. The phases of
increasing and decreasing phase difference are identified
on the limit cycle in Fig. 2(b) by the four points A, B, C,
and D. The dephasing is especially strong on the segment
from C to D, where the oscillator approaches the saddle
point along its stable manifold. In Fig. 2(c) we show
the total I'(8¢) as a function of the phase difference
8¢ . From this figure, it follows that diffusive interaction
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FIG. 2. (a) Phase shift induced by diffusive coupling as a

function of time during one limit cycle oscillation, normalized
fork = 1. 6¢ = 0.017 and I = 0.075. (b) Average relative
phase shift [antisymmetric part of I'(¢)] as a function of
the phase difference ¢ of two coupled oscillators. k& = 1,
1 = 0.075. (c) Picture of null clines and limit cycle. The
points A, B, C, D indicate where the interaction shown in
(a) changes between dephasing and synchronizing. The points
St, Sa, and Un are the stable fixed point, saddle point, and
unstable fixed point, respectively. (d) Enlargement of (c), with
the saddle point as well as its stable and unstable manifolds.
Three trajectories are shown, integrated each for dr = 3: the
unperturbed trajectory along the limit cycle, and trajectories
following perturbations to the inside (dotted line) or outside
(broken line) of the limit cycle.

will dephase interacting oscillators and stabilize them at a
phase difference of 7.

These results counter the widespread intuitive assump-
tion that diffusive-type coupling in one of the variables,
in this case the voltage v, should lead to gradual syn-
chronization of the phases along the limit cycle. Closer
scrutiny, however, shows that this does not necessarily
have to be the case: At any given moment, two interact-
ing systems typically differ not only in their v variable,
but also in their w variable. When they adjust their volt-
ages v toward each other, they will also depart from the
limit cycle. On a linear stretch of a small part of the limit
cycle as shown in Fig. 3, this will mean that one system
will be pushed inside the limit cycle and the other one
outside the limit cycle. The effect of being pushed away
from the limit cycle can have a much larger effect on the
phase than the fact that they approach each other in the
v variable [19]. If, as in Fig. 3(c), the lagging system is
pushed into a region with slower parallel velocity, it can
actually be delayed relative to the advanced system.

If, on the other hand, the systems differ only in the v
variable, as in Fig. 3(a), or if the lagging system is pushed
away from the limit cycle into a region of faster phase
velocity, then the overall effect of the interaction will be
to synchronize the oscillators. In actual limit cycle sys-
tems, it is not immediately obvious whether the net re-
sult of diffusive coupling will lead to synchronization or
desynchronization. However, for most limit cycle sys-
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tems, the synchronizing action will prevail. In order for
the desynchronizing action to prevail, some rather strong
deformations of the phase flow in the vicinity of the limit
cycle are required. In the present case, the presence of a
saddle point just outside the homoclinic limit cycle means
that systems lagging behind the other oscillators on the
stretch CD of the limit cycle will be pushed toward the
outside of the limit cycle. They then follow a trajec-
tory that passes much closer to and more slowly by the
saddle point.

While the saddle point causes the deformations of the
phase flow and thus leads to desynchronizing interaction,
the main features of the phase flow in the vicinity of
the limit cycle continue to remain unchanged even after
the saddle point disappears in a saddle-node connection
at I, = 0.0833. We therefore find that oscillators on the
limit cycle desynchronize for any value of 7 for which the
homoclinic limit cycle exists.

If we change the standard parameter values such that
the limit cycle appears through a heteroclinic connection
(f — 1/3) or a Hopf bifurcation (f — 0.2, vz — 0,v4 —
0.3,8cqs — 1.1) [18], we find that diffusive interaction in
v synchronizes oscillators for all values of I, < I < I5
for which those limit cycles exist.

It has to be pointed out that for the considered Morris-
Lecar system with our standard parameter values, the v
coupling becomes desynchronizing only when the orbits
of the oscillators are on or close to the limit cycle. If
the oscillators are placed close to the unstable stationary
point, they will initially synchronize their oscillations
while spiraling away from the stationary point. Only
when they start approaching the limit cycle will the v
interaction be dephasing.
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FIG. 3. Schematic illustrations of how attractive interaction
in one phase variable (horizontal direction) can lead to
synchronizations or dephasing of interacting oscillators: (a) The
interaction in v leads to synchronization when Aw = 0.
(b) The interaction does not act when Av = 0. (c¢) and (d) The
interaction can lead to a dephasing or faster synchronization
on stretches of the limit cycle where Av # 0 # Aw. In
(c), the lagging oscillator is pushed into a region of slower
phase velocity, leading to dephasing, while in (d), the lagging
oscillator is pushed into a region of faster phase velocity,
leading to enhanced synchronization.
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For a system of not-too-weakly coupled oscillators, we
obtain a scenario as depicted in a series of snapshots of
the phase space shown in Fig. 4: After a distribution of
synchronized oscillators has reached the limit cycle, it will
start to dephase. When the oscillators have spread out
along the limit cycle, they will start to pull each other
towards the center of the limit cycle. As the distribution
contracts toward the stationary point, the oscillators will
synchronize and start again to spiral out toward the
limit cycle.

This sequence of sychronization and desynchronization
can lead to a variety of complex long-time behavior
patterns, as illustrated in Fig. 5, which shows the average
voltage (1/N Y v;) of a population of interacting neurons
as a function of time. It should serve only as an indication
of the variety of temporal patterns that can be obtained; a
more exhaustive overview over the modes of dynamical
behavior will be presented elsewhere.

Two-dimensional dynamical systems usually do not
show complicated dynamical behavior beyond simple
limit cycle oscillations. The reason for the complicated
behavior seen in Fig. 5 for the mean-field-type treatment
of populations of coupled limit cycle oscillators is that
coupling of the oscillator v to the average voltage ¥ intro-
duces one additional variable into the dynamical system.
Dephasing interaction between oscillators ensures that the
average voltage v will deviate from the voltage of the in-
dividual oscillators, making the mean-field system of the
oscillators effectively three dimensional.

Similar complex time behavior has been found for
abstract systems of coupled two-dimensional Ginzburg-
Landau oscillators [20]. It has been speculated before
[1] that chemical turbulence might arise in systems
where diffusive coupling leads to dephasing, because
the effective phase diffusion constant is proportional to
I'7(0). In the present work, we obtain this condition
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FIG. 4. Typical distribution of oscillators in phase space
(I = 0.075, k = 0.2, and N = 100): (a) synchronized cluster
spirals toward limit cycle; (b) synchronized cluster spirals
on limit cycle; (c) cluster desynchronize on limit cycle; and
(d) desynchronized cluster spirals toward stationary point.
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FIG. 5. Voltage traces (average voltage) for large systems
of coupled Morris-Lecar neuron. (a) / = 0.0735, k = 0.2,
(b) I = 0.075, k = 0.4. (c) and (d) show enlargements from
(a) and (b), respectively. N = 200.

in a model with physiologically motivated dynamical
variables, which should provide guidance toward finding
chemical turbulence in biochemical systems.

Further related studies of neuronal oscillator synchro-
nization and dephasing were reported in [21,22]. This
work is not concerned with detailed modeling of cortical
architecture, as is Hansel and Sompolinsky [23]. Our aim
was only to show that complex time behavior can natu-
rally arise in simple networks of simple oscillators, if one
takes into account that simple diffusive coupling can lead
to alternating phases of synchronization and desynchro-
nization of coupled neuronal oscillators. We emphasize
that we obtain bursting in coupled two-dimensional oscil-
lator systems without any need to add a third slow variable
to the oscillator dynamics.
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