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Direct Numerical Experiment on Two-Dimensional Pinning Dynamics
of a Three-Dimensional Vortex Line in Layered Superconductors
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We clarify structures and dynamics of tilted vortices in the T, modulated three-dimensional (3D)
layered superconductor by performing a direct numerical simulation of the time-dependent Ginzburg-
Landau equation coupled with Maxwell's equation. The change of vortex dynamics from a rigid and
straight vortex line in the low temperature region to a stepwise vortex in the high temperature region
is observed. We investigate vortex pinning for columnar and point defects, and find that a flexible
deformation of vortex segments parallel to the layer in the 3D continuous stepwise vortex is reinforced
in the presence of pinning centers and leads to 2D pinning dynamics. Also, this increased flexibility is
shown to bring about more effective vortex pinning.

PACS numbers: 74.60.Ge, 74.80.om

The mixed states in high temperature superconductors
(HTSC's) have been extensively studied in recent years,
where one of the primary concerns is quasi-2D vortex
dynamics in intrinsic layered crystal structures [1]. Vor-
tex models have been proposed to explain this reduced

dimensionality in dynamics. For weakly anisotropic
HTSC s such as YBa2CU307 —s (YBCO), Tachiki and
Takahashi [2] suggested a stepwise vortex and two pin-
ning mechanisms, which are intrinsic pinning due to the
vortex segment parallel to the layer and extrinsic pinning
due to that perpendicular to the layer. On the other hand,
Kes et al. [3] and Clem [4] introduced a 2D pancake
vortex localized in the Cu02 layer for highly anisotropic
(Josephson-coupled) HTSC's such as Bi2SrzCaCu20s+s
(BSCCO), and proposed the extrinsic pinning by this 2D
vortex. In the former model, continuous 3D fIux lines
piercing through the sample are assumed, while the latter
model considers a stack of discrete 2D pancake vortices
existing in different CuO2 layers for the description of
vortex states. In fact, in weakly anisotropic HTSC's,
such as YBCO, there exist experimental data [5] for the
dependence of the critical current J,(0) on the angle
0 between the magnetic field and the c axis, which
are in good agreement with the stepwise vortex model,
whereas, for highly anisotropic HTSC's, such as BSCCO
[6] and Nd~ ssCeo tsCu04 s [7], many data on the
behavior of J, (0) are consistent with the 2D pancake
vortex model except in the high temperature region.
Moreover, in the artificial superlattice composed of
YBCO and Pr Yt ~BaqCu307 —t; (PrYBCO) where each
material has its different T, [T,(PrYBCO) ~ ,T, (Y BC)O],
the 3D-2D crossover on fIux pinning has been reported
using both the stepwise vortex model and the 2D pancake
vortex model in the temperature range below and above
T = T, (PrYBCO) [8]. This 3D-2D crossover has also
been observed in the fully oxidized YBCO (FO-YBCO),
in which the CuO plane and chain layer are considered
to have different T, 's [9]. Although there exist many

experimental data that support two models, it is still not
clear whether vortex dynamics in HTSC's, PrYBCO/
YBCO, and FO-YBCO are really represented by the
continuous 3D stepwise vortex line and discrete 2D
(coupled or decoupled) vortex. Therefore our purpose is
to investigate vortex features in those 3D and 2D vortex
dynamics behaviors and to propose a possible description
of vortex features in HTSC's. In this paper, we focus
on YBCO/PrYBCO and FO-YBCO and perform a direct
numerical simulation [10] using the time-dependent
Ginzburg-Landau (TDGL) equation. In our simulations,
the TDGL and Maxwell equations are discretized using

A.dl
the link variable e' J instead of the vector potential
A, and time derivatives of both equations are integrated
by the Euler method. Generally, within the framework of
the GL or TDGL theory, the layered structures of HTSC's
have been described by models such as the anisotropic
effective mass model [11]for weakly anisotropic HTSC's
and the Lawrence-Doniach model [12] for highly
anisotropic (Josephson coupled) HTSC's. In this paper,
we neglect effective mass anisotropy and concentrate only
on the modulation of T, since the target materials YBCO/
PrYBCO and FO-YBCO are weakly anisotropic super-
conductors, and a main characteristic of those materials
is the variation of T, . The equation employed for the
modulation of T, is T, =T + T, .cos[(2~/d)z], where
T, and T are 20 and 10 K, respectively. It is considered
that this model corresponds to a superlattice composed
of two superconducting materials in which Tc = 30 K
and T, = 10 K, and a coupling between layers gives
rise to the sinusoidal modulation of T, . If the measur-
ing temperature T is assumed to be below and above
T, (min) (= 10 K), 5-5' and S Ntype supercond-ucting
multilayers can be realized, respectively, by this simple
layered model. Also, a layered model with d = 8$(0),
in which d is the periodicity of the layer, is used in
all simulations. This condition fully corresponds to the
layered character of YBCO/Pr YBCO or FO-YBCO. The
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spatial modulation of T, and the computational region
are shown in the inset of Fig. 1. For numerical simula-
tions, the method is found in Ref. [10]. The boundary
conditions [V/i —(2e/A, c)A] P(„=0 for the TDGL
equation and B = H, + H; for the Maxwell equation
are introduced. Here, ~„ is the normal direction at the
free boundary surface, and H and H; are the applied
magnetic field and the current induced magnetic field as
shown in the inset of Fig. 1. The H; can be calculated by
Ampere's law as follows: fc H; . dl = Js 1 dS, where
C and 5 in the inset of Fig. 1 correspond to the path of
the line integral and the cross section perpendicular to
the current direction, respectively. In all simulations,
the GL parameter is 2, and the minimum mesh and time
step are 0.5$(0) and 0.01, respectively. The size of the
computational region is 40$(0) X 40$(0) X 20$(0), and
the applied field is tilted 45 from the c direction. Also,
the thermal noise for both equations is neglected.

First, we show the H-T diagram of the vortex structures
and characteristic distributions of the order parameter
corresponding to each phase in Fig. 1. It is found that the
vortex state can be classified into region I and region II

0.05 0.38 0.70

8 T=loK,He=0.6Hc2(10K)

FIG. 1. The H-T diagram of the vortex structure and compu-
tational region of a rectangular parallelpiped conductor. The
periodicity d of T, is 8$(0), and H, and H; are the applied
magnetic field and the current-induced magnetic field, respec-
tively. H, is tilted 45 from the c direction, and the direction
of the current is shown in the figure. The insets represent the
characteristic order parameter distributions of the steady vortex
states. The alphabet indicates the position in the H-T diagram.

due to the difference of vortex structures. In region I,
where T ( 10 [= T, (min)], straight Ilux lines or slightly
modulated flux lines are observed as shown in inset A
of Fig. 1. On the other hand, in region II, where T )
10 [= T, (min)], vortices are strongly modulated by the
layered structure, and a complete stepwise vortex, which
is composed of segments parallel and perpendicular to
the layer, is observed as shown in insets C and D of
Fig. 1. Here, it should be noted that in spite of T ) 10
[= T, (min)], the amplitude of the order parameter in
the weak superconducting layer with T, (min) shows a
nonzero value due to the proximity effect by stronger
superconducting layers. In this model, up to the boundary
line between regions II and III (surface superconducting
state) as shown in Fig. 1, only the continuous 3D stepwise
vortex is observed because the proximity effect induces
3D superconducting coupling. Just above the boundary
line, large normal regions formed by merging many
vortices are found to spread rapidly except for the surface
boundary.

Next, let us consider free fiux Bow without pinning
centers. Two snapshots of the Aux Aow of a stepwise
vortex and a straight vortex are shown in Figs. 2(a) and

2(b), where the open arrow and the solid arrow indicate
the direction of the moving vortex and the direction
of the Lorentz force, respectively. Here, the numerical
conditions are shown in the caption of each figure. It is
found that straight vortex lines move in the direction of
the Lorentz force as FL = B X J, while for the stepwise
vortex, both vortex segments perpendicular and para11el to
the layer move only in the direction parallel to the layer.
This is because the strong intrinsic pinning perfectly
prevents the vortex segment parallel to the layer from
moving in the direction of the Lorentz force. Therefore
the main dissipation arises from the vortex segment
perpendicular to the layer. With these behaviors, it is
found in the absence of vortex pinning that a crossover
from the 3D straight vortex dynamics to the 3D stepwise
vortex dynamics occurs at the boundary between regions I
and II.

Second, let us consider the vortex dynamics in the
presence of columnar defects [13—18]. In the numerical
simulation, the columnar defect in the direction of the
c axis is realized as a cylindrical region in which T, =
0, and the radius size is 2.0$(0). Two snapshots of
the distribution of the order parameter at T = 14 K
are shown in Figs. 3(a) and 3(b), in which Fig. 3(b)
corresponds to the snapshot after 60000 time steps from
the result of Fig. 3(a). Here, with the constant current
exceeding 1„it is shown that perpendicular segments of a
stepwise vortex move parallel to the layer and reiterate the
pinning and depinning process alternatively, while parallel
vortex segments extend or contract flexibly according to
the movement of perpendicular vortex segments. This
fact implies that the pinning by a columnar defect works
only for the perpendicular segments, and even in the case
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formed, and this deformation leads to effective pinning for
a vortex line and layer-independent quasi-2D vortex dy-
namics. We would like to point out that the 2D behaviors
on vortex pinning dynamics in HTSC's can be understood
on the basis of a continuous 3D vortex line with flexible
layer-parallel segments.

We thank K. Kato for computer graphics.
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FIG. 5. The enlarged view of the moving vortices and the
cubic-shaped point defects. The numerical conditions are
shown in the figure.

in the figure that the pinned vortex is strongly deformed
compared with other free How vortices. It is found that
the strong point pinning in the high-temperature region II
is extremely effective due to the flexible deformation of
a stepwise vortex. By observing the vortex dynamics
in the presence of these two types of strong pinning
centers, it is predicted that the pinning dynamics of the 3D
continuous vortex line with flexibly deformed segments is
roughly equivalent to that of the decoupled 2D vortex.
It should be noted that quasi-2D vortex dynamics can be
formed only in the condition that the pinning energy is
sufficiently larger than the deformation energy for layer-
parallel segments.

In conclusion, the perpendicular segment of a stepwise
vortex is mainly responsible for the pinning and dissipa-
tion, while the parallel component only contributes to the
deformation of the vortex line. Also, in the presence of
the pinning center, we found that the vortex is more de-
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