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Cavitation versus Vortex Nucleation in a Superfluid Model
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We consider a "subcritical" nonlinear Schrodinger equation as a simple model of a biphase (vapor/
liquid) superfluid helium. Both cavitation and vortex nucleation might occur in such a liquid whenever
the local velocity exceeds certain critical values. In our model, the critical velocity for cavitation is
smaller than the one for the appearance of vortices. However, cavitation mediates vortex nucleation by
a self-sustained mechanism. This effect dramatically decreases the critical speed for dissipation.

PACS numbers: 67.40.Bz

It is shown in Ref. [1] that when the Landau criti-
cal speed for phonons is exceeded vortices are created
in a model of superfluidity at OK, that is, the nonlin-
ear Schrodinger (NLS) or Gross-Pitaevskii equation [2].
This model bears many fundamental properties of real su-
perfluid He?I, such as the existence of sound waves and
quantization of circulation. However, the NLS equation
may differ slightly from real He II. One such difference is
the lack of a roton minimum in the excitation spectrum
difference that can be restored by a convenient change of
the nonlinear part [3]. Another discrepancy is related to
basic thermodynamics: The equation of states deduced
from the NLS equation always yields a single (superfluid)
phase, although this phase exists in nature only with a
certain nonzero density and can be in equilibrium with a
vapor phase (at OK this vapor could also be in a coherent
quantum state, a kind of "supergas, "which has never been
observed, either in helium or other elements). The possi-
bility of two phase equilibria (liquid/vapor) is important
because of the following remarks: Vortices are emitted in
a superflow as the velocity exceeds a certain value, but the
high speed regions correspond to a low hydrostatic pres-
sure area due to the Bernoulli effect. In classical fluids,
this low pressure may be sufficient to trigger the forma-
tion of bubbles via the (dynamical) cavitation process.

Below we present a model in which cavitation takes
place, and it occurs that within the modeling constraints
cavitation develops at speeds lower than that required for
vortex nucleation. This in turn can trigger the nucleation
of vortices by a rather complex physical process. Indeed,
for a flow around an obstacle, the formation of bubbles
on the obstacle locally accelerates the fluid and therefore
it facilitates the nucleation of vortices. We also find that
the critical flow speed for dissipation is decreased.

Our starting point is the "subcritical" NLS (SNLS)
equation [4,5], which reads in dimensionless form

iB,Q = —
2 Ap —2p, ~p[ p + ~p~ p, (1)

where t/t represents the wave function of the conden-
sate and 6 is the Laplacian. With our notation, the

physics of this model depends on the dimensionless ra-
tio g = p, /po, where po = ~Po~ is the uniform solution
representing the density of the liquid phase. Roughly, p,.
is a fraction of a packing density, so that po can be con-
sidered as an adjustable parameter related to the pressure.

It is useful to employ the hydrodynamical variables

p = ~P~ and v = VP, with @ being the phase of P.
Consequently Eq. (1) can be rewritten as

a p = —V' (pv)

(3)

Equation (2) is for mass conservation, and Eq. (3) is
a Bernoulli-like equation, whenever the "quantum pres-
sure" term (I /2p '/ )5 (p '/ ) can be neglected, as, for
example, for slowly varying perturbations. The equilib-
rium hydrostatic pressure is related to p by the equation
of state P = p3[3 (p/p, ) —(p/p, ) ] and the sound

speed is c = QBP/tip = ~2p, g(p/p, )2 —p/p, , ; thus.
BP/Bp ( 0 for p ( p, . In order to have an idea of
how realistic this can be, we plot c vs P, which concurs
qualitatively with the data for liquid He [6] (see Fig. 1).
In our model, the sound speed vanishes near the critical
point (P, ) as c —(P —P, )'/4 although experimentally it
seems that c vanishes as c —(P —P, )'/ One can rem-.
edy this difference by taking a model with a piny term
in the energy [7] which changes the critical velocities,
although the physical behavior is qualitatively the same.
This (P —P, )'/ behavior has been explained by the ef-
fect of quantum fluctuations in the equation of state [7].

We restrict ourselves to the case po ~ p,. , since we
have seen that for po ( p, the sound speed is not defined
since t7 P/8 p ( 0 and the liquid is unstable.

Equation (1) can be written in Hamiltonian form as
i t7, t/t = BH/6$", where H = f(2 )VP~~ —p, . ~P~ +4

~P~ ) dx. The ground state for a fixed number of
particles (or for a fixed mean density po) is found via
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a Lagrange multiplier p, . Comparing the free energy
(H —p, N) between the liquid and gaseous phases
obtain for large density (po ~ 2p, ) that the liquid
is the only stable phase, because the free energy has
only one minimum representing the liquid phase. For
3
2 p, ~ po ( 2p, the vapor state is metastable while for

p, ( po ~
2 p„the liquid phase is metastable. We

will focus particularly on the domain 2 p, ~ po ~ 2p, ,
in which the vapor is metastable.

The order parameter |(/ in the SNLS equation belongs
to a continuum with the same topology as in the NLS
equation. Thus the SNLS, like the NLS equation, has
"vortical" solutions (points in 2D and lines in 3D): The
phase of P turns by 2m~, m is an integer (the "charge"
of the vortex), around such a vortex. If one looks for a
vortex solution of the form 1//

= gpo R(par)e™~,where
r and cp are the polar coordinates centered at the vortex
core, then R(s) satisfies

—1 R — R+R =0,/'2p, 2p,
i po po

(4)

z (v —v ) + (2p,. —po)pp —2p, p + p = 0.

with the boundary conditions R(0) = 0 and R(~) = 1.
Near s = 0, R(s) —A s' ~ and R(s) tends to 1 for
s ~ ~. Only vortices with ~m~ = 1 are linearly stable.
Solving Eq. (4) numerically by the shooting method we

5
get Ai = 0.286 for g = &, for example.

Below we show that the SNLS equation can describe
dynamical cavitation, as explained at the beginning. By
analyzing numerical simulations in a simple problem of
2D flow around a disk we shall explain the interplay
between the two processes of cavitation and vortex
nucleation. We assume that at infinity the flow is
uniform, with a velocity v and a density po. Neglecting
the quantum pressure, we deduce from the Bernoulli limit
of Eq. (3) for this steady fiow configuration a relationship
between p and v anywhere in the flow:

Contrary to what happens in the NLS equation, this
equation may have more than one root p for a given v,
which is at the basis of the bubble nucleation process.
The problem of vortex nucleation is similar to that shown
in Ref. [I]; for low speeds we can always find a sta-
tionary solution of Eqs. (2) and (5) and thus the system
does not dissipate because of the d'Alembert paradox.
The nucleation of vortices occurs when the station-
ary solution disappears, that is, when the continuity
equation (2) 7' [p(V'P)VP] = 0, which is elliptic at
low speed, becomes hyperbolic. This occurs when

[p(v)v] = 0, where p is a function of v deduced
from Eq. (5). This condition is a generalization of the
Landau condition for superfluidity and we could inter-
pret this as saying that vortices are nucleated when the
current p(v)v is a maximum. Near the homogeneous so-
lution (p = po), we find an approximation for the mass
density from Eq. (5): p = pa[1 —(v —v„)/2c2],
where c is the sound speed [c = 2po(1 —p, ./po)].
Consequently, we find exactly the same criteria for
vortex nucleation as for the NLS equation for the local
speed v: ci [p(v)v] = pa[1 —(3v2 —v2)/2c2] = 0.
This gives a critical speed for the nucleation of vortices:
v'"' = Q(2c2 + vz)/3. Wherever the local velocity v
exceeds v"', the stationary solution of the fluid equation
disappears and a vortex is nucleated in such a way that
it lowers the fluid velocity outside of its core to make it
less than v"' everywhere.

For uniform steady flow v = v, the critical speed is
v = c, i.e., the Landau criterion. But in general the flow
is created around an obstacle; in this case the maximum
of the velocity occurs on the boundary of the obstacle (in
2D, at low speed, this is because v, —i v~ is an analytical
function of x + ty), where the vortex nucleation occurs.
For instance, for a cylinder in a horizontal flow, the
velocity is maximum at the upper and lower points of the
disk, and the local speed is twice the velocity upstream.
This gives the critical velocity at infinity for vortex

2
nucleation v'"" = » c [I]. For a sphere the speed

3
along the equator is 2 v, and v"' = c.

For the SNLS equation, another phenomenon comes
into play: The local density of the liquid diminishes
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FIG. l. (a) The pressure for the SNLS model as a function of p/p, . and (b) the sound speed c/c(0) as a function of
3the pressure, where c(0) is the sound speed at P = 0. Thus we have c (0) =
2 p,
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when the fiow velocity is increased [see Eq. (5)]. When

v is sufficiently high, such that p(v) =
2 p„the liquid

phase becomes metastable against the formation of
a bubble of vapor. This leads to a critical velocity:
v = vM"' = (v' + I:(3g'/4 —2g + 1)/(1 —g)]c'&'"
(Maxwell point), where the energy density of the vapor
and of the liquid are the same. This criterion is only local
since it is not possible to achieve a speed greater than
vM" in the whole volume for pp ~ 3/2p, .

When p(v) = p„the liquid phase is unstable. This
defines another critical velocity, v " = tv + (1—
g) c2]'~z, (~vM" ), marking the linear instability of
the liquid phase. If the velocity reaches v " some-
where, a vapor bubble should grow spontaneously.
For example, in the two-dimensional disk a bubble
grows first where the velocity is maximum, that is,
on the upper and lower points of the disk, where
v = 2v . This gives a critical velocity at infinity for
cavitation: (vM" ) = Q(3g2/4 —2g + 1)/3(1 —g) c,
(v "b) = Q(1 —g)/3 c, and as we have said for vortex

2
nucleation (permanent drag) v"' =

i i c. For our
model cavitation occurs on the disk perimeter at a lower
speed than that for vortex shedding.

We simulated a 2D flow, with a constant velocity at
infinity, v, around a disk with p, /pp = 0.6625 (this
models He tt at zero pressure well [7]), such that the vapor
phase is metastable versus the liquid phase p = po. In this
case (vM" ) = 0.064c, v„" = 0.34c, and v"" = 0.43c.
The boundary conditions are P = 0 on the disk, which
come from the mean-field theory of superAuid helium, as
explained by Ginzburg and Pitaevskii [2]. That is, there is
no helium inside the obstacle. Let us describe the different
Aows as v is increased. Clearly, if v ~ v~" everywhere
(this condition is sufficient but not necessary), a stable
stationary solution of Eqs. (5) and (2) exists, and the fiow
is dissipationless, by the d'Alembert paradox.

With our boundary condition, the solid boundary be-
haves like a seed for cavitation, something that is well
known for ordinary fluids. To illustrate this, let us com-
pute the structure of the boundary layer that develops
to make the transition from P = 0 on the disk to the
density in the flowing fluid. This is accomplished, as-
suming that the direction of the fastest variation is nor-
mal to the solid boundary, by solving the following 1D
amplitude equation, deduced from Eq. (3) (here we take
Av = v —v as a control parameter):

——, R" + [Av'/2 + (2p, —pp)pp]R—

2p ppR + poR = 0,

with p = @OR . This 1D equation is integrable and
yields the density profile near the wall depending on
the local speed. Physically, a Bow increases only the
size and the curvature of bubbles but does not lead to a
nonstationary dissipative flow. Note that the divergence

of the thickness of the boundary layer for v ~ vM" as
(vM" —v) '~ is only fiction, since at infinity the liquid
is always stable, because we do not take into account the
variation of local speed as a distance from the obstacle.

For the 2D flow around a disk, we can approximate
the thickness of the molecular boundary layer. For low
speeds it is given a function of the angular position
along the perimeter by the formula r(O)/R = 1 + e[1-
v ~sinO~/(vM" ) ] '~, where e is roughly the ratio of the
healing length to the radius of the disk R. Figure 2(a)
shows the qualitative agreement with a numerical simu-
lation of a fiow around a disk at low speed (such that a
stationary solution exists).

As v reaches a critical velocity slightly larger than
the Maxwell velocity at infinity (but smaller than vb"b),
the interface between P = 0 and the fiowing fiuid at the
top of the disk cannot form [therefore the region where
v is greater than v~" should be big enough, so that
it explains why it occurs for a slightly larger velocity
than (vM" )~]; so instead a bubble seed grows, and this
bubble growth is self-sustained, since the curvature at
the top of the bubble is larger than the disk curvature,
then the fluid is accelerated even more than when passing
by the disk, this increases the Bernoulli effect, and the
bubble growth again, etc. In our simulation, the whole
process brings the local velocity to the onset of vortex
nucleation and of dissipation. As vortices begin to be
emitted, they carry on some vapor, having a low pressure
core. Finally this leads to a bubble caught behind the
disk, as shown in Fig. 2. Notice that, for such a problem,
the final critical velocity at infinity for vortex nucleation
is crucially decreased, because it is in the order of (vM
when this self-sustained process appears.

The created bubble can be compared to the Kirchhoff
bubble [8] since it is maintained by the emission of
vortices. In fact, the bubble grows until it achieves a
length whereas the vortices long to be released, detaching
themselves from the Kirchhoff bubble. Probably the
bubble stops growing because it requires too much
capillary energy to increase the length of its boundary.
After the first pairs of vortices have been detached, the
bubble retracts itself because of surface tension. Indeed
the surface tension can be defined directly from the SNLS
equation: This comes from the quantum pressure term
which we have often neglected, since it is particularly
important at the interface, where p varies from 0 to po
over a small distance. However, vortices are periodically
nucleated near the solid wall, pulling the bubble again,
and also detaching themselves from the bubble. So the
bubble is maintained by these two antagonist processes:
surface tension and nucleation of vortices. This picture
agrees with recent experiments in superfIuid He", where
the presence of vortices seems to be crucial in the
cavitation process [9].

In conclusion, it is a pleasure to thank S. Balibar,
C. Guthmann, H. Lambare, and E. Rolley for useful
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a)

FIG. 2. (a) Numerical simulation of the flow around a disk, with g = so; the flow moves from left to right; the disk is the
53

white circle in the middle of the figure. Dark color represents a low density. (a) For low speed, v /c = 0.1, we can see the
thickness of the molecular transition layer, which is in good quantitative agreement with the predictions. For higher velocities,
v /c = 0.22, (b) the vortices have been emitted and go downstream the disk, pulling back the vapor phase. (c) The vapor phase
stops growing whereas the vortices extract themselves from a kind of "Kirchhoff-bubble. "

(d) The vortices are separated from the
Kirchhoff-bubble and follow the Aow whereas other pairs of vortices are emitted.

discussions and J. Clark for her help. The numerical
simulations were done on the Connection-Machine of the
CNCSPT and at the "Centre Regional de Calcul PACA,
antenne INRIA-Sophia Antipolis. "
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