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Nature of Crossover between Ising-like and Mean-Field Critical Behavior
in Fluids and Fluid Mixtures
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An analysis of experimental data for the susceptibility of fIuids and of liquid mixtures in the critical
region has been performed to elucidate the character of the nonasymptotic critical behavior. While
fluids and fluid mixtures exhibit an ultimate crossover to Ising-like asymptotic behavior, the effective
susceptibility exponent y, tt approaches the universal value y = 1.24 either from above (A) or from
below (B). We conclude that simple fluids belong to type B, whereas more complex systems may
belong to type A and show a sharper nonmonotonic crossover from mean-field to Ising-like behavior.

PACS numbers: 64.60.Fr, 05.70.Jk

It has been well established that isotropic fluids be-
long to the three-dimensional (3D) anisotropic Ising
model (equivalent to the 3D lattice gas) universality class.
Specifically, the susceptibility ~ (isothermal compressibil-
ity in one-component fluids and osmotic compressibility
in liquid mixtures) in zero field in the one-phase region
asymptotically close to the critical point behaves as

y = I'or ~(1 + I )r + I zv. + )ar + . .), (1)

where r = (T —T,)/T, T is the temperature, T, the criti-
cal temperature, and y and 5 are universal critical
exponents, y = 1.239 ~ 0.002, 5 = 0.52 ~ 0.03 [1];
I'o, I'&, I z, a t, . . . are system-dependent amplitudes. Ex-
pansion (1) is called the Wegner series [2]. Since real
fluids do not obey the symmetry of the lattice gas, the sus-
ceptibility g also contains terms —r (ct = 0.11) [3]and

~+~- (5„= 1.32) [4] which are, however, weaker
than the second Wegner correction term -~ ~+ . In a
wider region around the critical point the susceptibility of
fluids may exhibit crossover from universal Ising-like be-
havior to mean-field (van der Waals —like) behavior [5—9].
If one defines an effective susceptibility exponent y, ff as

ff 7 d ln g/dr [5], a positive value of I ~ means
that y, ff approaches the asymptotic value y = 1.24 from
below providing a smooth crossover from the mean-field
value y = 1. However, there are several indications that
such a simple monotonic crossover with positive I ~ is
not universal. The possibility of negative corrections
follows from field-theoretical renormalization-group
approaches [10]. Liu and Fisher [11]concluded that for
the nearest neighbor sc, bcc, and fcc 3D Ising lattices
the first correction amplitudes for the susceptibility,
correlation length, specific heat, and order parameter are
negative, so that y, ff asymptotically approaches y = 1.24
from above. Moreover, negative leading corrections
have been reported for some aqueous solutions near the
consolute critical point [12,13], whereas for other fluid
systems [14,15] the corrections are positive. Recently,
Narayanan and Pitzer have performed an extensive study

of the near-critical turbidity of several nonaqueous ionic
solutions [16,17]. They fitted the susceptibility and the
correlation length, extracted from the turbidity data, by
the Wegner expansion (1), and found that the character
of the nonasymptotic behavior is strongly affected by the
dielectric constant of a solvent. In particular, in their
latest paper [17] they indicated possible negative V~ at
least for two of the systems investigated. With negative
I

&
the crossover of y,ff from y~ = 1 to y = 1.24, if such

a crossover exists, would be nonmonotonic and sharper
than usual.

The crossover between the asymptotic and regular
regimes reflects a competition between universality
caused by long-range fluctuations and nonuniversality
associated with the microscopic structure of matter.
Therefore, an important question arises: Does there exist
any regularity in the character of the critical crossover
behavior in fluids and fluid mixtures? One should note
that extraction of the actual crossover from experimental
data is a very delicate task. Specifically, the susceptibil-
ity of fluids is never measured directly. It can be
extracted most accurately from light scattering or from
turbidity experiments. The interpretation of such data
requires reliable information on the correlation function
which itself exhibits crossover behavior. Hence, the fit
appears to be essentially nonlinear. Moreover, the actual
crossover behavior may be masked by multiple scattering,
gravity effects, and impurities close to the critical point
and by noncritical (background) contributions away from
the critical point. That is why, in spite of a large number
of experimental studies, there are only a few with a
precision sufficient to recover the actual nonasymptotic
critical behavior. We note that as the convergence of
the Wegner series is in doubt, a fit by the expansion (1)
is dangerous, and an explicit crossover equation for the
susceptibility is needed to determine the values of the
correction amplitudes.

To fit experimental susceptibility data we have used
a crossover solution for the free energy based on
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renormalization-group matching [18] as implemented to
fluids by Chen et al. [7]. For the inverse susceptibility

in zero field in the one-phase region in appropriate
dimensionless units this crossover solution implies

tY(y —)/~
2' A

(1 —u) Y

1 —(1 —u)Y-
2 ~ 1

(2)

&.O5

y.oo

The crossover function Y is defined by

A z- i/z
1 —[I ——

u] Y = » + Y'/",
K

Og 7/NGi

FIG. l. Effective susceptibility exponent according to Eq. (2).

= tY t=Ct7=Cp T Tc
(3)

where u = u/u*A with u proportional to the coupling
constant in the Landau-Ginzburg-Wilson Hamiltonian and
u' the fixed-point value of the coupling constant [6].
For 3D Ising-like systems u* = 0.472 [19]; v = 0.63
and ~ = 5/v = 0.8 are universal critical exponents,
c, is a system-dependent amplitude. In the mean-field

1/2
approximation A = ci qo s p [7] with qD the actual
cutoff wave number, characterizing a discrete structure
of matter with spacing qz . Asymptotically close to the
critical point (A/tr » 1) the crossover susceptibility (2)
reduces to the Wegner expansion (1) with

I i
= giN~; (1 —u),

where g~ = 0.106 is universal number. The crossover
parameter

y —1 —vu"'/2 2

[15], (ii) intensity data for 3-methylpentane+nitroethane
(3MPNE) near the critical consol ute point obtained
by Chang, Burstyn, and Sengers [14] and Shanks
[13], (iii) intensity and turbidity data for isobu-
tyric acid+water (IBAW) near the critical conso-
lute point obtained by Shanks [13], (iv) turbidity
data for five nonaqueous ionic solutions of tetra-
n-butyl ammonium picrate (TBAP): TBAP+1-
dodecanol (TPDD), TBAP+1-undecanol (TPUD),
TBAP+1-tridecanol (TPTD), TBAP+1,2-propanediol
(TPPD), TBAP+1,4-butanediol/1-dodec anol (0.75/0. 25)
(TPDB) near the critical consolute points obtained by
Narayanan and Pitzer [16,17].

The expressions for the light scattering intensity I and
turbidity 7, have the forms

I = IpR (t)Rz(t)y(t)g(qg) + I",

r' = rp(T)f(y)X(t) + r, ,

= 0.0314c, '(uA) = 0.141c, 'u (5)

plays in this crossover solution, in the limit
u ~ 0(A ~ ~), the same role of a crossover scale as the
so-called Ginzburg number [20] in the e-expansion solu-
tion obtained by Belyakov and Kiselev [8,9]. This is why
we retain the name "Ginzburg number" for this parameter.
It is important to note that N&; is always positive, whereas
I"~ changes its sign with u ~ 1. Far away from the criti-
cal point the susceptibility (2) approaches the mean-field
limit (A/tr « 1):Y = 1, ~ ' = t. The behavior of
the effective susceptibility exponent y, ff according to
the crossover model (2) is shown in Fig. 1. One can
see that for u ) 1 (u ) u*A) the crossover is sharper
and y, ff approaches the asymptotic value y = 1.24
from above.

To analyze the crossover behavior of the susceptibil-
ity we have used the following experimental light-
scattering data: (i) intensity data near the vapor-liquid
critical point of xenon obtained by Giittinger and Cannell

where Ip is a reference amplitude, Ri(t) and R2(t) are
functions accounting for turbidity and double-scattering
corrections, g(qs) is the correlation function taken in the
Ornstein-Zernike approximation, g(qg) = [I + (qg) j
with the wave number of the scattered light (for 90 )
q = 2~27m/Ap (Ap is the wavelength in vacuum, n the
refraction index). The function f(y) is given by f(y) =
(2y2 + 2y + 1)y ln(1 + 2y) —2(1 + y)y [21] with

2I /y
X=Xp

Ip yp ——2(2' n $p/Ap),

77 Vp
7p

Ax

is the amplitude of the power law gpr ' for the
correlation length (sp ~ sp [9]), x the mole fraction,
N~ Avogadro's number, I and 7, are background
contributions to the intensity and turbidity, respectively.
I", rb, and sp, as well as the two crossover parameters, u

and A/ci, were found by fitting, while T, was recovered,
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within the accuracy of its experimental determination;
I

~ and NG; were calculated with Eqs. (4) and (5).
Since the turbidity and intensity data for the mixture of
isobutyric acid and water have a comparable accuracy in
the range ~ ~ 7 X 10, both the intensity and turbidity
data were fitted jointly. To reduce effects of background
contributions the range of fitting was generally restricted
to ~ ( 2 X 10 . The range of temperatures close to the
critical point was restricted to ~ ) 5 X 10 for IBAW,
~ ~ 10 for 3MPNE, and ~ ) 10 " for xenon and
nonaqueous ionic solutions.

The results are presented in Table I. The most strik-
ing result is a negative Wegner correction amplitude I ~

(correspondingly u ) 1) for the isobutyric acid+water
mixture (already noticed by Shanks [13]) and for three
nonaqueous ionic solutions. For 3MPNE and for two
ionic systems, TPUD and TPPD, the amplitudes I ~ are
small and difficult to be determined. We also tried
to fit the experimental data with different versions of
the crossover solutions. Xenon and 3MPNE can be fit-
ted equally well with the crossover function proposed
by Belyakov and Kiselev as a phenomenological gen-
eralization of the e expansion [8,9] with a very similar
crossover scale. In all cases a random distribution of
deviations in' addition to the g criterion served as a test
of a good fit. It should be noted that we never could ob-
tain an adequate fit for IBAW, TPDB, TPDD, and TPTD
with u & 1 for any crossover model.

In Fig. 2 the effective exponent y, f& is presented for the
four systems studied. It is clearly seen that the character
of the crossover is obviously different for the systems with
u ~ 1 (simple monotonic crossover with y, rr approaching

y = 1.24 from below) and for the systems with u & 1

(much sharper crossover with y,&r approaching y = 1.24
from above). All fiuids studied can be divided into two
types of crossover behavior, A and B (Fig. 3). For type A

ff approaches the universal number y = 1 .24 from
above (negative I'~) and for type B from below (positive
I &). These two types are separated by the effective
fixed point of the renormalization group theory for which
u = 1(uA ' = u") and I ~

= 0 [11]. A question arises:
What features of the microscopic structure drive the
systems along the universal line in Fig. 3(b)?

x

1.2

1.1

1.0
1.3—

Xe
3MI NE

1.2—

IBAW

1.0 1 I—5 —4 —3 —2 —5 —4- —3 —2

log v-

FIG. 2. Effective susceptibility exponent according to Eq. (2):
xenon [15]; 3MPNE mixture: run 1 (o), run 2 ( ), run 3 g),
run 4 (+), run 5 (C), run 6 (X) [14], and [13] (+); isobutyric
acid-water [13]; TPDB [17]. The points indicated the values
deduced from the experiments with 2-point (xenon) and 5-point
averaging procedure.

The crossover solution, used in this work, was suc-
cessfully applied earlier to a number of simple fluids
to represent thermodynamic properties in a broad region
around of the critical point [7]. For all these fluids u ( 1,
the crossover is monotonic, and the crossover tempera-
ture scale is represented by a single crossover parameter,
namely, NG;(1 —u)' [9]. It has not been demonstrated
theoretically that the crossover function (3) is also valid
for u & 1 which implies I't ( 0. Nevertheless, we see
from Fig. 2 that the crossover function does give a good
account of y, ff even when 1

&
( 0. If we adopt this solu-

tion, we may speculate that in complex Auids the crossover
1/2

parameter A/c~, which is not necessarily identified with
the actual cutoff wave number qD, may be related to

t/2
the additional microscopic scale so —suet /A. For

&/z &/2
simplefluids ct /A = 1 and sD = so. When ct /A »
1, sD » so. The latter case is relevant to the discus-
sion of criticality in ionic systems [22]. Nonaqueous ionic

TABLE I. Crossover parameters for different systems.

Xenon
3MPNE
IBAW
TPDB
TPTD
TPDD

1.5
1.25
3.2
7.6
6.6
64

Adjustable

0.48
0.97
1.50
1.44
1.09
1.11

gp (nm)

0.184
0.215
0.361
0.353
0.360
0.364

1.08
0.02

—0.68
—1.5
—0.35
—0.42

Calculated
No; (X10s)

3.0
13.2
6.7
1.1
0.86
0.94
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FIG. 3. The first correction amplitude of the susceptibility
plotted on a universal scale in accordance with Eq. (4).

solutions are characterized by a small value of the
Ginzburg number [23]. The inequality u/u" A ) I may,
however, be satisfied provided that A is very small
and s~ is very big. The physical origin of this scale
depends on the particular microscopic structure and might
reflect either supramolecular association or an additional
interaction of a longer range, or both. To elucidate the
connection of the additional scale with the physical prop-
erties of fluids one requires more systematic information
on the crossover behavior in different classes of fluids and
fluid mixtures, as well as new experiments specially de-
signed to recover details of the crossover behavior. Ionic
fluids, in particular, metal-ammonia solutions in which
a sharp crossover and mesoscopic-range order [24] have
been reported, and polymer systems [25] are promising
candidates for such a study.
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