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Novel Spectroscopic Method for Analysis of Nonthermal Electric Fields in Plasmas
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In this Letter we present a simple and reliable method for the determination of the mean amplitude of
the nonthermal fields and the ion Doppler temperature, based on the analysis of the Stark and Doppler
broadening autocorrelation function. The method makes no assumption on the distribution function of
the turbulent field or that the nonthermal fields are quasistatic. An independent “typical field” analysis
may be performed to obtain information on the field frequency.

PACS numbers: 52.70.Kz

The investigation of turbulent fields in a variety of
plasma devices, for example, pulsed plasmas, is of much
importance since the presence of turbulence may signifi-
cantly affect the plasma behavior and the device op-
eration. Turbulent fields should also be accounted for
in interpreting spectroscopic measurements [1,2]. Non-
intrusive spectroscopic methods can be highly useful if
the spectroscopic information can be properly analyzed.
In this Letter, we present a simple but reliable method
for the determination of the mean amplitude (E?) of the
nonthermal electric fields (NF’s) from the spectral profiles
of Stark-broadened lines. Treatments based on a standard
impact/unified theory [1,3,4] or a simulation [5,6] for the
analysis of line profiles in the presence of NF’s require as
an input the functional form of the time-dependent NF’s,
along with the distribution functions. Thus one needs to
know the functional form of the stochastic nonthermal
microfield

E() = E(@[a]), (D
where [a] is a set of parameters, as well as the distri-
bution function for these parameters. For pure thermal
fields, the set [« ] consists of particle velocities, impact pa-
rameters, times of closest approach, and angles, where the
total field is, in the independent particle model, a sum of
Debye-shielded fields [6]. For the NF’s, however, neither
the functional form of E(¢,[a]) nor the distribution func-
tions are generally known, and simple models are used
[7-9]. In addition, an impact/unified treatment is only
valid for weak perturbations, which is usually an excep-
tion for NF’s.

On the other hand, a quasistatic (QS) treatment is often
used for the turbulent fields. Such treatments employ
entire line profiles [10—12], or simply linewidths [13], and
assume a one- or more dimensional Gaussian electric field
probability distribution function (PDF). It is well known
[5,6,14], however, that the QS approximation is quite bad
for low- and medium-density plasmas, especially for lines
with a strong unshifted component, such as H,. Thus,
a treatment that assumes QS turbulence for the entire
line profile, although perhaps justifiable in specific cases,
is in general inapplicable, unless thermal and Doppler
broadening are large enough to produce linewidths that
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are much larger than the field fluctuation frequency. In
addition, although the tail of the turbulent distribution
function is expected to be Gaussian [15], a Gaussian
approximation for the entire distribution function may be
incorrect, as there are also other intervals where the shape
of the distribution function is expected to be different.
For example an E~> dependence is predicted in the self-
similar range [15].

The proposed method starts by Fourier transforming the
experimental spectrum to obtain the experimental autocor-
relation function (AF), denoted C(z). All information will
be determined from the short-time behavior of C(t). This
is essentially the same as using the line wings, rather than
the widths. However, dealing with the AF rather than the
profile appears to be clearer and simpler, in that no decon-
volution of the thermal Stark profile is required. For short
times, C(¢) is correctly reproduced by the QS approxima-
tion, i.e.,

Clt) = D> L), )
k

where L, are known constant, line-specific numerical
coefficients, with the obvious property of >, L;y = 1 and

Ci =f cos(arE)W(E) dE, 3)
0

with W(E) the total PDF, a; = skt, and s a numerical
constant. For example, for Hg, the QS AF is [16]

Cu, (1) =f dE W(E)[153 cos(2x) + 912 cos(4x)
+ 669 cos(6x) + 384 cos(8x) + 373 cos(10x)
+ 16cos(12x) + cos(14x)]/2508, 4)

with x = sEt and s = 1.5eaq/#%, respectively. (In the
case of lines with a quadratic Stark effect, this line of
analysis yields (E*), which is also a useful quantity.) If
we neglect Doppler and thermal Stark broadening, i.e., if
W(E) is due purely to NF’s, then C(z) is quadratic in
time for short enough times. This fact does not depend
on the precise functional form of W(E), i.e., whether
W(E) has a Gaussian or more complicated decay; the
only requirement is that W(E) drops fast enough for large
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E so that (E?) = f: dE W(E)E? is finite, in contrast to
the thermal case. Thus the requirements of the present
method are even weaker than a Gaussian tail; the tail
has only to decrease fast enough so that (E?) is finite.
It is believed that W(E) is such that all moments exist,
whether there are corrections to the Gaussian decay or
not. In that case, for short enough times, the Taylor
approximation cos(ax) = 1 — (a’x?/2) yields
2.2
akt

Ci(t) =1 — T<E2> + 0@%. (5)
Thus, for example,
Cu, (1) =1 —=2525E* + 0(t*) (6)
and
2.2 2
Cry(1) = 1 — 62‘%“” + 00, )

Note that Yakovlev [17] had proposed to obtain the mo-
ments of the electric field by integrating the experimental
profile multiplied by w to the appropriate power, but Oks
and Sholin [11] pointed out that the net (E?), obtained
by integrating EZ with the fotal microfield distribution, is
still divergent due to the tail of the particle field distribu-
tion. All these convergence problems may be attributed
to using C(z) and its derivatives at exactly t = 0. If we
use C(¢) at small, but nonzero times, the cosines provide
convergence to the integrals (3), but then the thermal and
NF contributions must be decoupled to obtain information
on {E?).

By evaluating C; for a joint distribution of a NF and
a thermal field, and using a Holtsmark distribution for the
thermal field, one may evaluate Cj and show that C(¢) has
the short-time behavior

ks®w? ]
Mc?

+ 0%, (8)

Ey being the Holtsmark field [1], M the emitter mass,
® its temperature, kg the Boltzmann constant, w( the
unperturbed frequency, and c the speed of light. b; and
b, are defined as by = >, Lk and by = >, Ly k2. It
should be pointed out that no assumption of isotropy is
made for the NF. Also, a Holtsmark PDF for the thermal
field is justified, not only because of our experimental
situation, but because we are interested in the short-time
behavior of the AF, which is determined by large fields,
for which a Holtsmark PDF is valid. We note that for
very short times the thermal ¢3/2 contribution dominates.
As a result, it is in principle possible to obtain the
Holtsmark field Ey, and from it the density, as the limiting
value of the quantity

C(t) = 1 — bi[3(sEot)*/?] - g[bzszﬂ‘?z) +

1 — C(t

-, (2) _ E(.?)/z ©)
5(Sf)3/2b1

as t — 0, where C(7) is the experimental AF (the Fourier

transform of the line profile). Having done so, and having
deconvolved the thermal Stark profile, one then obtains

Ry

Cy, which is the ratio of the experimental over the pure
thermal Stark AF, which has the short-time behavior
kB@ w%

M2 ] (10)
If the Doppler temperature is known or may be neglected,
this yields directly (E?). In the opposite case, at least
two lines are needed. Let us emphasize that if one
deconvolves the pure Stark profile one should make sure
that a theory that handles the line wings correctly has been
used. A simple QS calculation of the short-time thermal
AF is sufficient for our purposes. In principle, therefore,

2
Cv() — 1 — %[b232<52> +

ES” is determined by plotting Ry vs t as t — 0. The
quantity
2
w()k3®
Ry =(E?) + —5—— 11
2 = (E%) S2c2Mb, (1)
is determined by plotting for short times
2|1 — Cy(z
[1 - Cy(0)] .
(s1)%by

vs t and taking the limiting value as t — O.
Turning now to practical questions, there are two
essential requirements as to the times that may be used to

determine the quantities of interest ES/Z and R,. The first
requirement is to restrict oneself to times for which the
QS approximation is valid. This criterion [18] reads r <
(p)/vo where (p) is the mean interparticle spacing and
vy = /2kp®,/u with w the reduced emitter-perturber
mass and ®, the perturber temperature. In the case of
nonthermal broadening, the right-hand side of the above
criterion must be replaced by the inverse of the typical
fluctuation frequency of the field, for which an upper
bound may be given by the electron plasma frequency.
Whereas in the thermal case a factor of 10 may not be
sufficient for the applicability of the above criterion [14]
due to the small impact parameter part of the distribution,
in the nonthermal case there is no part of the distribution
oscillating faster than the electron plasma frequency, and
hence this criterion is much easier to use.

In addition to this requirement, the times used for the
parameter determination must be such that higher order
corrections within the QS approximation are negligible.
In practice, this is the case if the quantities plotted
approach a constant value as t+ — 0, but it can also be
easily verified from a simple evaluation of the expansion
parameters.

These requirements may be too stringent as far as the
Holtsmark field determination from R, is concerned, since,
in order to preserve the validity of the QS approximation
for the thermal Stark broadening and to ensure that the
thermal term is the dominant one (compared to Doppler
plus nonthermal), one is forced to restrict oneself to very
short times, for which the experimental AF is only very
slightly smaller than unity. Such an accuracy may be
hard to achieve. However, not determining Eqy does not
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preclude an accurate determination of (E2) and ®. If the
mean NF amplitude (£2)'/2 is much larger than the typical
particle field (of the order of the Holtsmark field), then
the decay of C(t) is very quickly dominated by the NF.
(This also applied to Doppler broadening if it dominates
thermal Stark broadening, and of course also to electron
broadening, whose contribution to the AF for any time of
practical interest is linear in time.) (E?) and ® will, in
that case, be determined in a region where the drop in C(?)
due to the thermal field is negligible compared to the non-
thermal/Doppler drop and thus the thermal C(z) need not
be deconvolved at all (i.e., one may neglect the £3/2 term);
hence exact knowledge of Ej is not required. The point
is that if the turbulent field is dominant (E£2) is determined
from a spectral region that is not in the too distant wings.
If L(w) is the experimental profile and L(w) + §L(w)
the true profile, then one may show that the relative error
AC(t) in 1 — C() and hence all quantities linear in it is

rolri(2) — Ce(1)]
1 = Cg(t) + ro[1 — ri(0)]’

where ryg = [6L(w)dw/ [L(w)dw and ri(t) =
[éL(w)e*' dw/ [ 8L(w)dw, with Ce(t) = [L(w) X
dwe*”'/ [ L(w)dw the experimental AF. The point
is that the numerator in AC(z) is, for short times, the
product of two small numbers, while the denominator
is the sum of two small numbers; hence AC should be
small. The experimental error 6 L(w) arises from the
“missing frequency range” (MFR), i.e., the fact that the
experimental profile does not extend to infinity, electrical
and shot noise (N), and possibly other causes. The net r
is simply the sum of the MFR and Nry. For the net r;(z),

_ [ 6Lmrr(w)e*® dw + [SLy(w)e* dw
n(0) = ro [ L(w)dw )

AC(t) = (13)

(14)
Worst case MFR estimates are easy to do, since the
slowest decay rate is given by the Holtzmark asymptote.
Improved bounds may be obtained by extrapolation of
the observed spectrum into the wings. Bounds for the
noise contribution may be obtained from its variance,
which is in turn estimated [19] from its power spectrum.
Alternatively, such bounds may be deduced from noise
level estimates [20].

To illustrate the use of the method, Fig. 1 shows an
(E?) determination using the Balmer a and B profiles
from a recent experiment with a plasma opening switch
[20,21]. For this experiment, a 2 eV Doppler temperature
was determined from measurements at an earlier time, and
estimates based on collision and charge exchange rates.
Thus, after deconvolving a Doppler profile corresponding
to a temperature of 2 eV, one finds (E?) to be 227 (kV/
cm)? from H, and about 207 (kV/cm)? based on Hg, as
Fig. 1 shows.

An improved version is not to assume the Doppler
temperature, but to calculated it self-consistently. Thus,
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FIG. 1. Determination of (E?) from the short-time behavior
of the AF for the experiment described in Refs. [20,21]. The
solid line is R, determined by using the H, experimental
AF, the dashed line uses the H, experimental AF after
deconvolving a 2 eV Doppler contribution, the dotted line
uses the Hp experimental AF, and the dash-dotted line uses
the Hg experimental AF after deconvolving a 2 eV Doppler
contribution. It may be seen that for the (E?) determination
from H, and Hg, times shorter than about 0.6 and 0.2 ps,
respectively, are used.

a self-consistent (£2) and ® determination from H, and
Hpg, i.e., determining R, for each line and solving the
system of these two equations and two unknowns (EZ)
and O, yields (E2?) = 200 (kV/cm)? and ® = 1.9 eV.
Such a calculation of (E?) may be supplemented by a
“typical” field analysis. Recall that the AF is an average
of product of U matrices describing the propagation under
a single realization of the stochastic E field [14]. A
typical field is a single field with an assumed oscillatory
form, which would result in an unaveraged AF (UAF) that
is close to the experimental AF for not too long times.
There are two physical effects involved in this definition
and illustrated in Fig. 2: The first is that for a given
fluctuation frequency the initial decay of the UAF is faster
for stronger fields. The second effect is that for a given
field amplitude this decay is slower for a faster oscillating
field. This second effect is very simple to see from
the Schrodinger equation, for a rapidly changing sign of
the interaction. Since the plasma frequency represents
an upper bound for the field fluctuation frequency, and,
furthermore, since a QS field is ineffective in broadening
the central component of H,, the typical field amplitude
is between the value that most closely matches the decay
of the experimental AF at zero (or any QS) frequency and
the value that matches the experimental AF at the plasma
frequency. The combination of these two effects results in
a relative insensitivity to the short and intermediate time
UAF with functional form. For each experimental profile
one may thus construct a field amplitude vs frequency
curve that most closely matches the experimental AF.
If one has two profiles, the intersection of these curves
gives the typical field amplitude and frequency. It must
be emphasized that this approach completely neglects the
statistics. The typical field is meaningful to the extent
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FIG. 2. Experimental and calculated AF’s for Hg for the
experiment of Refs. [20,21]. The solid line is the experimental
AF and the dashed line the experimental AF divided by the
thermal AF. The field amplitude is, respectively, 2.16 (dotted),
10.8 (dash-dotted), and 21.6 kV/cm (double-dash-dotted). The
fluctuation frequency is (a) ) = 3 X 10 Hz, (b) Q =9 X
10'° Hz, (c) Q@ = 3 X 10! Hz, and (d) Q = 5.6 X 10'! Hz.

that the NF may be described by amplitude and frequency
and then only in the sense that a distribution of fields
with a dominant probability density region significantly
displaced from the above-mentioned curve will result in
too fast or too slow an AF decay that will be inconsistent
with the experiment.

In summary, a new nonperturbing method for the
determination of (EZ) is proposed, which makes no
assumption on the turbulent PDF and does not assume
weak or quasistatic turbulence. The method requires
good quality line profiles covering a fair part of the line
wings. In addition, one may obtain the “typical” field
amplitude and fluctuation frequency from a solution of
the Schrodinger equation for a single field. The method
has been demonstrated obtaining the mean electric field
amplitude in our plasma opening switch experiment using
the observed H, and Hg profiles.
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