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We show that there are qualitative differences between the temperature dependence of the spin and

charge correlations in the normal state of the 2D attractive Hubbard model using quantum Monte Carlo
simulations. The one-particle density of states shows a pseudogap above T, with a .depleted N(0) with

decreasing T The su. sceptibility ~, and the low frequency spin spectral weight track N(0), which

explains the spin-gap scaling: 1/Ti T —y, (T) Howe. ver, collective excitations contribute to the charge
channel, and the compressibility dn/d pis T, independent. This anomalous "spin-charge separation" is

shown to exist even at intermediate ~U( where the momentum distribution n(k) gives evidence for a
degenerate Fermi system.

PACS numbers: 74.25.Jb, 71.27.+a, 74.40.+k, 74.72.—h

The unusual normal state properties of high T, super-
conductors (SC) have led to many studies exploring pos-
sible scenarios for the breakdown of Fermi liquid theory
(FLT) [1]. Much of this effort has been in one of two
directions: search for genuinely new non-Fermi-liquid
ground states arising from strong correlations in the prox-
imity of an insulating state, or search for a low energy
scale such that for temperatures above it one would see
deviations from FLT. In this paper we take a different
point of view and ask the question: Is the normal state of
a short coherence length SC necessarily a Fermi liquid?
More specifically, if the ground state is a condensate of
fermion pairs, and the phase transition leads to a degen-
erate Fermi system above T„do the correlations in that
normal state have to be described by Landau's FLT? If
not, what are the characteristic deviations from FLT?

For weak coupling SC, with the coherence length go »
a, the lattice spacing, the normal state is a FL and both
amplitude and phase coherence are established at T, As

so/a decreases, the temperature scale T* at which the
amplitude builds up separates from T, at which phase
coherence is established [2,3]. In the extreme limit of
tightly bound pairs, the system is a normal Bose liquid
above T, . The question then is if there is a broad
intermediate coupling regime, especially in 2D, where the
normal state T, & T & T* has a "Fermi surface" and yet
exhibits non-Fermi-liquid correlations.

The simplest lattice model within which this problem
can be studied is the attractive Hubbard model where
the pair size can be tuned by varying the strength of
the interaction. In the absence of a small parameter
we use quantum Monte Carlo (MC) simulations [4,5]
to gain insight into the intermediate coupling regime
above T, . While the U ~ 0 Hubbard model is not a
realistic microscopic model for the high T, materials, it
has two merits: its simplicity (fewest parameters) and the
reliability of low temperature MC simulations, since it is
one of the few interacting fermion models which is free
of the "sign problem" at all densities [6].

We begin by summarizing our main results which are
obtained in the normal state (T ) T,): (1) The momentum
distribution n(k) shows a structure reminiscent of a
Fermi surface, though broadened by both thermal and
interaction effects. (2) A pseudogap opens up in the
one-particle density of states (DOS) well above T, .

The DOS is strongly T dependent —hence the notation

Nr(0) —with dNT(0)/dT & 0. We obtain NT(0) using a
new method that avoids numerical analytic continuation.
(3) At low T, the spin susceptibility ~, (T) = Nr(0),
while the compressibility (dn/d p)is T, independent.
The spin and charge responses are thus qualitatively
different. (4) The low frequency spin spectral weight has
the form K(q) = Imp(q, ui)/cu —NT(0)/I o(q) where
the T dependence is largely in the DOS and I'o(q)
is essentially the same as in a noninteracting system.
This naturally explains the spin-gap scaling I/T~T —=

g~ K(q) —g (T), noted in our previous work [5], and
observed in the underdoped high T, cuprates [7].

These results show that the normal state of a short
coherence length 2D SC exhibits marked deviations from
usual Fermi liquid behavior. One obtains a kind of "spin-
charge separation" with the spin correlations determined

by one-particle excitations, while collective excitations
also contribute to the charge channel.

Consider the attractive Hubbard Hamiltonian H =
tc; c, + H.c. —(U(g, nqn;t + p, g, . n;~,

where the hopping is between nearest neighbor sites. All
energies are measured in units of t, and the lattice spacing
a = 1. We shall focus here on ~U~ = 4 and (n) = 0.5.
Qualitatively similar results were obtained at

~ U~ = 8 and
at other fillings [8]; details will be published separately.

To establish that we are above T, in our finite system,
we estimate the correlation length g(T) from the spatial
decay of the SC order parameter correlation function on
systems of size up to L = 16. We find that for ~U~ = 4
we have g —3—4 at T = 1/6; thus g(T) «L and the
system is normal. Earlier finite size scaling estimates [4]
gave T, = 0.05 for ~U~ = 4, (n) = 0.5. The crossover

312 0031-9007/95/75(2)/312(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 2 PH YS ICAL REVIEW LETTERS lQ JULY 1995

I I
I

I I I1—
U= —4
7=0.25
&n) =0.5

0.8—

I I I
I

I

0.4—

axa
10x10
12x12

0 14x14
16x16

0.2—
I

g
0 Ih fllISES@

(rr, vr) (o,o) k (~ o)
FIG. 1. The momentum distribution n(k) vs ~k~ along [1,0]
and [1,1] for ~U~ = 4, (n) = 0.5, and T =- 0.25. The Fermi
function (U = 0) is shown as the long dashed curve, and the
U = —~ Bose limit result is plotted as the short dashed curve.
The statistical error bars on all the MC data, unless explicitly
shown, are less than the size of the symbols in this and other
figures.

scale T' is estimated [5] to be T* = 1 based on the
deviation of g, (T) from the random phase approximation
(RPA) result at high T.

SingIe-particle properties. —To ascertain that the sys-
tem is degenerate at moderate

~
U ~, we study the momen-

tum distribution n(k) = g (ck ck ) on large lattices oft
size up to N = L = 16; see Fig. 1. It is clear that n(k)
shows a rapid variation with k—a "Fermi surface"—
even though it is broadened by the temperature and also
affected by the interactions. We emphasize that we are
not in the large-~U~ preformed boson limit, where the
constituent fermions (tightly bound into singlet pairs) and
nondegenerate and their n(k) is independent of k.

We now turn to the single-particle density of states
(DOS) N(or) with or measured from p, . This is given

by N(or) =
rv gk M(k, or). Here A. is the spectral

function, which is related to the imaginary time Green
function G(k, r) = —(T~ck (r)ck (0)]) viat

G(k, r) = — dor A. (k, or) (1)
exp( —or r)

1 + exp( —Por
for 0 & r & P = 1/T. To estimate A and from it the
DOS, given MC data for G(k, r), involves inverting this
Laplace transform. We avoid the numerical complications
inherent in such an analytic continuation by deriving a
general expression for N(0) in terms of G(k, r), which
is valid provided there is no low energy scale in the
problem. Fourier transforming to real space and looking
at the local Green function at r = P/2, we get G(r =
0, P/2) = —f de sech(Por/2)N(or)/2. Let A be the
frequency scale on which there is structure in the DOS;

for T « 0 we obtain [9]

N(0) = —PG(r = 0, r = P/2)/vr .
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FIG. 2. The one-particle density of states NT (0) at the
chemical potential (full triangles) and the spin susceptibility

(open squares) as a function of temperature for ~U~ = 4,
(n) = 0.5, and L~ = 8~.

The one-particle DOS obtained from (2) is plotted in
Fig. 2 as a function of temperature. We see that for
T ) T,. a pseudogap develops at the chemical potential
and the DOS NT(0) is depleted as T is reduced. This
behavior should be compared with that in weak coupling
where the DOS remains featureless above T„except for a
small Iluctuation dip [10]. The pseudogap at intermediate
coupling may be thought of as the evolution of the weak
coupling Iluctuation dip into a regime where a/str is no
longer a small parameter.

Spin and charge correlations. —In Fig. 2 we also
plot the uniform, static spin susceptibility g, . The T
dependence of y, was already noted in Ref. [5]; what we
see here is that this T dependence comes entirely from
that of the one-particle DOS, so that ~, (T) = NT(0) (to
within the errors inherent in extracting the latter).

It is interesting to ask whether the charge channel
also exhibits the same pseudogap. The compressibility
(dn/d p, ) was obtained by numerically differentiating [11]
the average density (n) determined as a function of p, .
We found that dn/dp, shows significant system size
dependence (much more than, e.g. , ~,); small system data
show (finite size) upturns that are pushed down to lower
T with increasing I.. The results on the largest lattice
(L = 16) plotted in Fig. 3 show that the system becomes
more compressible with increasing

~
U

~
(see below). More

significantly, in sharp contrast to the one-particle DOS,
dn/d pis very weak, ly T dependent.

Within a simple RPA (particle-hole bubbles), we obtain
(dn/d p) P = 2Ntr(0)/[I —

~ U(Ntr(0)]. This is valid
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FIG. 3. The compressibility (dn/dp) for (n) = 0.5, ~U( = 0
(full line), and ~U~ = 4 (open circles), as a function of T
obtained on a 16 lattice. The T = 0 noninteracting and the
T = 0 mean field result for

~ U~ = 4 are also shown.

I p(q) —uFq. Further P& I p (q) = Np(0) leads to the

Korringa law (1/Ti T)p = gq Kp(q) —Np (0).
In Fig. 4 we plot the MC results for K(q) for q 4 0.

The analytic continuation for K used the method of
Ref. [5]. From Fig. 4(a) we see that K(q) is more or less
uniformly suppressed at all q with decreasing T. Further,
this T dependence is similar to that of y, (T) (or the
DOS) shown at q = 0 in Fig. 4(a). For fixed T the q
dependence of K(q) resembles that of the noninteracting
system; see Fig. 4(b). These results thus suggest that

K(q; T) = nNT(0)/I p(q), with n independent of T and

q; i.e., the T dependence comes from a DOS with
a pseudogap, while the q dependence is that of the
noninteracting system. This form for K(q; T) leads to
I/Tt T = gq K(q; T) = nNp(0)NT(0), thus providing a
natural explanation for the spin-gap scaling I/T~T—
g, (T) found in our earlier MC studies [5].

only when ~U~Np(0) && 1, where it correctly explains
the trend that attractive interactions increase dn/dp, ;

for large ~U~ RPA fails in that it predicts an entirely
spurious instability (phase separation) when ~U~Np(0) =
1. In fact, pairs form at large ~U~ and their resid-
ual interactions are repulsive, so that the compress-
ibility of the system remains finite for all

~
U ~. It

is simplest to see this in the broken symmetry state
at T = 0 where we find [12] that, within mean field

(MF) theory, dn/d p, decreases monotonically with
~
U

~

from dn/dp, = 2Np(0) [I + ~U(Np(0)] for small ~U~ to
dn/dp=(U(, /4dt —2/(U( for (U(/t » 1. The T =
0 MF result [12] is also shown in Fig. 3 and is found to
be of the right order of magnitude as the normal state MC
result; note that we do not expect dn/d p, to change dra-

matically as T goes through T, .
The difference between the spin and charge response

functions could be characterized as a sort of spin charge
separation [13]. In its mildest form this exists even in

a Landau Fermi liquid where y, and dn/dpare quan, -

titatively different, the two being renormalized by dif-
ferent FL parameters: Fo and Fo. What we see here is
much stronger: As a result of strong interactions, g, and

dn/d p, acquire qualitatively different T dependences. As
argued above, the spin response is dominated by inco-
herent single-particle excitations, which is T dependent
because triplet excitations require breaking up the singlet
pair correlations, while the pair excitations directly con-
tribute to the charge channel.

Spin-gap scaling. —We next use our results for the T-
dependent DOS NT (0) to gain insight into the suppression
of low frequency spectral weight in the spin channel
as probed by K(q) = lim p Im+(q, tu)/tu. To contrast
with our MC results, it may be useful to recall that for
a Fermi liquid (all quantities denoted by a subscript 0)
Kp(q) = Np(0)/I p(q) is T independent for T « eF with
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FIG. 4. (a) Low frequency spectral weight in the spin channel
K(q; T) = lim„o imp(q, cu)/cu for q 4 0 (open symbols)
plotted along [1,0] and [1,1] for various T The dashed lines.
are guides to the eye. The filled symbols plotted at q = 0 show
2.0y, (T) with T corresponding to that of the open symbols.
Note that the T dependence of K(q) is similar to that of the
susceptibility g, (T). All of the data are for

~ U~ = 4, (n) = 0.5,
and I ~ = 8 . (b) At a fixed T the q dependence of K(q) is
qualitatively similar to that of the noninteracting case. To show
this we compare the K(q) at T = 0.25 (open squares) with the
full curve given by 2~, (T)Ko(q), where Kp(q) is the essentially
T-independent spectral weight for the noninteracting system.
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We note that 1/TiT —y, (T) is observed in the (pla-
nar) 0 and Y NMR in a large number of (usually under-
doped) cuprates [7]. What distinguishes the results pre-
sented here from spin-gap theories [14] based on spin
models is that the anomalies exist in a single layer 2D
system with itinerant carriers with a large Fermi surface.
Secondly, in the present approach these anomalies are
directly related to the T dependence of the one-particle
DOS. On the other hand, since we work with a "coarse-
grained" model, rather than a realistic microscopic one,
we cannot discuss the q structure of the spin response
leading to differences in the Cu and 0 NMR, or the dop-
ing dependences. It is also an important open problem
to study the normal state precursors of short coherence
length SC with nodes in the gap.

In conclusion, we have shown that the normal state of a
2D short coherence length SC exhibits characteristic devi-
ations from Fermi liquid behavior: While the momentum
distribution gives clear evidence for a degenerate Fermi
system, the one-particle DOS shows a pseudogap [15],
and the spin and charge correlations show qualitatively
different temperature dependences.
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