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Persistent Small Scale Anisotropy in Homogeneous Shear Flows
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The turbulent velocity fluctuations in a homogeneous shear flow (mean velocity U= SyXx) are studied
numerically, in the range of Reynolds number 2600 = Re = 11300. The skewness of the z component
of vorticity is independent of the Reynolds number in this range, suggesting that some small scale

anisotropy remains at very high Reynolds numbers.

This anisotropy is not seen in the two-point

correlation functions. An analogy is drawn with earlier results on turbulent mixing of a passive scalar
with a mean gradient. The relevance of this work for turbulent boundary layers is discussed.

PACS numbers: 47.27.Ak, 47.27.Eq, 47.27.Nz

Fluid turbulence is known to involve a wide range of
length scales. The largest scales of motion are controlled
in real flows by boundary conditions which are specific to
the system. However, according to Kolmogorov theory
(K41) [1] small scale fluctuations should be independent
of the structure of the large scale flow provided the
Reynolds number Re is large enough. As a corollary,
one expects the small scale fluctuations to be isotropic
and have “universal” statistics. Decades of experiments
on a number of flows have shown that the two-point
functions, such as ({u(x) — u(0)]?) (where (- --) denotes a
statistical average), closely follow K41’s predictions [2—
4], including the prediction for the isotropization on small
scales [4—6]. The K41 theory, however, fails for the
2n moments of the structure function ({u(x) — u(0)]**)
(for n = 2) which do not agree with the K41 predictions
neither in the inertial [7] nor in the dissipative [8] range.
This is attributed to the phenomenon of “intermittency”
for which a variety of phenomenological theories [9]
have been proposed. Yet the small scale fluctuations
contributing to the high moments are always assumed to
be isotropic.

The purpose of this Letter is to point out a violation
of this isotropy assumption for homogeneous shear flow.
Below we shall present the results of a numerical simu-
lation demonstrating, within the accessible range of Re
numbers (Re = 11 300), that although the two-point func-
tion of vorticity becomes more isotropic with increasing
Re, the normalized third moment (skewness) of vorticity
component consistent with large scale shear remains con-
stant, indicating persistent anisotropy of the higher order
correlators.

The above phenomenon is analogous to the behav-
ior of a passive scalar in turbulent flow. It has been
known for some time [10] that in a turbulent bound-
ary layer over a heated wall the time derivative of tem-
perature measured at one point is strongly asymmetric,
resulting in a large skewness. More recently, a simi-
lar effect has been observed in numerical simulations
[11,12] and experiments [13] on a passive scalar ®, mixed
by a homogeneous, isotropic random [11] or turbulent
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[12,13] flow, in ttle presence of an imposed mean scalar
gradient: (®) = G - X. Whereas the Kolmogorov type
estimate [11] would predict longitudinal gradient skew-
ness s(9)0) = {(90)%)/((80)*?/? ~ Re" /2 (where
31® = G - VO/|G]), the observed value is O(1). A
snapshot of the scalar field [see Fig. 1(a)] reveals a “ter-
raced” structure consisting of well-mixed “plateau” re-
gions (of size comparable to the integral scale) separated
by “cliffs” corresponding to sheets of large gradient, as
if the imposed gradient has been expelled from the bulk
of the flow and has gotten concentrated in sheets leading
to the large positive s(8;®). This mechanism for the ap-
pearance of small scale anisotropy might be imagined to
work also for vorticity in a shear flow and has motivated
the present investigation.

Below we present the results of a direct numerical
simulation of a homogeneous shear flow. The imposed
mean flow is U = (Sy,0,0), where S is the shear. The
size of the computational domain is L = 27 in all
directions. The Navier-Stokes equations imply that the
velocity fluctuations # = (u, v, w) obey

d:u + Syd u + Svi + (u-Viu = —Vp +vVu, (1)
V-u=0. )

Because of the advection of velocity fluctuations by the
mean flow, the field cannot be periodic in the normal,
y, direction. However, it is possible to impose periodic
boundary conditions in the variables x’ = x — Syt, y' =
v, and 7 = z, and therefore use efficient pseudospectral
methods [14]. To prevent too wide a difference between
the computational and the physical mesh, the moving
coordinates (x',y’,z’) are periodically remeshed, with a
period S™!. By analogy with the definition used in
Ref. [15], the Reynolds number is defined by Re =
SL?/v.

Equation (1) implies the following equation for the
kinetic energy:

0u2/2 + Suv) = —v{d?), 3)

where @ is vorticity. In a system of finite size one expects
to reach a statistically steady state [16], characterized
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FIG. 1. A snapshot of the scalar concentration ® mixed by
a homogeneous, isotropic flow (a), and of the total component
of the streamwise component of the velocity, Sy + u(y) (b),
in a given plane z = const. The lines correspond to a set of
positions in x, uniformly spaced, the scalar or velocity being
offset by a fixed amount. The dotted lines correspond to the

mean gradient (G = $) (a) and to the shear velocity Sy (b),
both uniform in the x direction. In (a), regions with a strong
scalar gradient separate regions where the scalar is well mixed.
Strong velocity gradients can also be seen in (b), in particular,
in the center of the figure.

by a balance between the production term —S{uv), the
Reynolds stress tensor, and the dissipation »{(®?2), at
least for high enough Reynolds numbers. The transient
regime is characterized by a violent growth of the kinetic
energy (#?)/2 and enstrophy (@?). While this growth
eventually stops, as Fig. 2 demonstrates, the turbulent
regime that follows exhibits large fluctuations of spatially
averaged quantities (much larger than for simulations of

Energy, Enstrophy

FIG. 2. Energy fluctuations (full line), and enstrophy fluctua-
tions (dotted line), as a function of time for our run 3. Both
quantities have been divided by their rms: (x?/2) = 1.85 and
{w?) = 49.26. Spikes in kinetic energy are followed by spikes
in enstrophy (i.e., dissipation). The level of the fluctuations is
about 50% and roughly independent of the Reynolds number.

homogeneous, isotropic turbulence), at least for Re =
2600. The initial phase of the run (for Sr < 40) was
systematically discarded, when computing the statistical
averages discussed below. Because of the unusually large
level of fluctuations, very long runs are necessary to
get steady averages, which explains why we chose to
work at moderate resolution (1443). The convergence of
the results was studied for the lowest Reynolds number.
Table I contains a list of runs, with the sampling time
Ty, measured in units of the shear time scale (S™!), the
effective resolution Ax/n, where = (¥2/{@*)"/* is
the Kolmogorov length scale. Comparison of runs 1 and
2 shows that our resolution is adequate. Some of the
main statistical results are contained in Table II and are
discussed below.

A measure of the small scale anisotropy is provided by
the norm of the following tensor: v;; = (w;w;)/{®?) —
8;;/3. This quantity decreases with increasing Reynolds
number; see Table II. Although the range of scales avail-
able in our numerical simulations cannot match Ref. [4],

TABLE 1. A list of our runs showing the number of grid
points (n), the effective resolution achieved (Ax/7), and the
sampling time, in units of the shear time (7,5 ).

Run No. Re n Ax/7 ST,
1 2631.9 48 2.7 210
2 2631.9 64 2.0 210
3 34329 64 2.4 160
4 4386.5 80 2.2 110
5 6073.6 100 2.2 70
6 8224.7 108 2.5 80
7 11279.5 144 22 72
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TABLE II.

The variance of the vorticity fluctuations, the vorticity anisotropy tensor

({vijvij)), and the skewness of the z component of the vorticity and of the partial derivative

of u in the z direction.

Run No. (w?)/S? (UijUij)l/2 S(w,) S(9,u)
1 384 * 1.4 0.17 £ 0.006 —0.54 = 0.05 0.84 = 0.06
2 36.6 = 1.5 0.17 = 0.006 —0.54 = 0.05 0.86 = 0.07
3 49.2 = 24 0.15 = 0.007 —0.53 £ 0.05 0.88 * 0.07
4 53.4 £ 3.5 0.14 = 0.009 —-0.54 = 0.07 0.87 = 0.07
5 59.2 = 3.1 0.14 = 0.008 —0.54 = 0.05 0.82 = 0.08
6 829 + 42 0.12 = 0.007 —0.54 = 0.06 0.79 £ 0.08
7 86.3 = 3.5 0.12 = 0.006 —0.58 = 0.06 0.87 £ 0.07

the decrease of (v,-jvl-j)]/2 with Re is roughly consistent
with Corrsin-Lumley’s argument [5,6] that the anisotropy
on any small scale r is of the order of the ratio of the
large scale strain to the strain on scale r, which for
the dissipative range implies (v;;v;;)!/? ~ S/{@?)!/? ~
Re™ /2. One may note that in contrast to vorticity the
local velocity covariance tensor (the Reynolds stress)
(ujuj) is dominated by the large scales and remains
anisotropic [20].

The above estimate of small scale anisotropy applies
equally well to the skewness. However, instead of
decreasing [5,6] as s/(®2)!/? the numerical data yield

_ ()
s(wy) = (@) ~ —0.53, (4a)
dyuy
s(dyuy) = @% ~ 085 (4b)

independent of Re (Table II). Note that we took here
S > 0; changing the sign of S would result in opposite
signs in Eqgs. (4a) and (4b). The probability distribution
function (PDF) of w,, shown in Fig. 3(a) for runs 2 and
7, does not change much in the range of Re covered here.

Thus the shear flow exhibits a similar violation of small
scale isotropy, quantified by the derivative skewness, as
the passive scalar problem. However, the skewness in
the former is comparatively smaller than the skewness
of the scalar derivative 9;®, which was found [11-—
13] to be 1.5-2. The large skewness of the scalar
derivative was shown to be related to the “cliff and
plateaux” structure, clearly seen in physical space in
Fig. 1(a) [11,12]. The situation is similar in the shear flow
problem, although less pronounced [compare Figs. 1(a)
and 1(b)]. Strong vortex sheets, corresponding to large,
positive values of 9,u,, can be found, but their size in
the (x, z) plane is comparatively smaller than the size of
the scalar sheets. Also, whereas the effective expulsion
of the scalar gradient from large regions results in the
sharp maximum of the PDF [11,12,21] of the derivative
of the scalar fluctuations at 9j® = 0, in the case of the
velocity derivative 9, u, (or w,) the maximum of the PDF
is located at about —0.6S (or 0.6S5), which correspond
to weaker “expulsion” (here, complete expulsion would
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correspond to the peak of the PDF of d,u, at —S).
However, vorticity is not a passive field, and one cannot
expect more than a qualitative analogy between the two
cases. In fact, in the steady state, the sheets always
coexist with vortex tubes, which are at least as intense
as the vortex sheets.

The fact that a large scale anisotropy seems to affect the
moments of order n > 2 of the velocity derivative sug-
gests that the study of intermittency effecis should not be
limited to the longitudinal correlation functions. One pos-
sible experimental system for studying the phenomenon
in question is the logarithmic region of a turbulent bound-
ary layer. These flows are characterized by a constant
momentum flux, [{(uv)| = u2. In boundary layers, the av-
eraged shear varies like U /dy = u./y, where y is the
distance to the wall, and u. is the scale of the veloc-
ity fluctuations [22]. The vorticity fluctuations behave as
(02 ~ u3/vy. The dimensionless ratio (w2)!/2/9,U ~
y!/2, implying that the vorticity fluctuations are getting
bigger compared to the mean shear as one gets further out
from the wall, corresponding to the increase of the effec-
tive Re number. If the scenario presented here is correct,
one expects the anisotropy of the two-point function of
vorticity to decrease with y but the vorticity skewness to
be of O(1), independent of y. This, in fact, is consistent
with the existing measurements [23].

Finally, we mention that our simulation of the homo-
geneous shear layer also provides information about the
PDF of velocity and momentum flux (or Reynolds stress
tensor), which have been studied in considerable detail in
the boundary layer experiments [24]. In these flows, the
wall breaks the inversion symmetry (u,v) — (—u, —v),
as well as translational invariance in y. Remarkably,
we find that the coefficient of correlation [24] R =
(uv)/{(u?)!/>(v?)!/2 = —0.44 is very close to what is ob-
served experimentally in the logarithmic layer [4,22,24].
The possible “universality” of R may be rationalized on
the basis of its relation to the energy balance [Eq. (3)].
The ratio (v?)/(u?) = 0.37 falls within the range of ex-
perimentally measured values. We find that the PDF of
u is almost Gaussian and the PDF of v and w have ex-
ponential tails for |v|, |w| larger than ~3 times the rms.
This suggests further analogy with a passive scalar [25]
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(see [26] for a comparable study in turbulent boundary
layers). The PDF of the momentum flux, #v, is shown in
Fig. 3(b) for our run 7. This PDF hardly varies with Re.

It is a pleasure to thank Eric Siggia for his help.
We gratefully acknowledge the “Institut Méditerranéen
de Technologie,” in Marseilles, and the “Institut du

10° 3
1072 —
€ ]
A 3
ar ~ :

-4
3 10 —
\N =
3 -
~ 3
107¢ —

1078
E T T E
0 - :
10 - —
107 b —=
S E
2 = —~
o E 3
107% 3
107 |- -
i L l Lo I L1 A:.'L L ]

—-20 -10 0 10
(uv—<uv>)/<(uv)?>1/?
FIG. 3. Probability distribution function of the spanwise

component of the vorticity (a) and of the Reynolds stress tensor
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differences can be seen on the positive side.
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