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Experimental Evidence for Differences in the Extended Self-Similarity Scaling Laws
between Fluid and Magnetohydrodynamic Turbulent Flows
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It has been recently suggested that the various qth order velocity structure functions in turbulent
flows are related to each other through well defined scaling laws, which extend outside the usual inertial
domain. Even if theoretical models provide different scaling laws for fluid and magnetohydrodynamic
turbulent flows, no attempt has been made up to now to furnish experimental evidence for these
differences. By using measurements from the solar wind turbulence and from turbulence in ordinary
fluid flows, we show that the differences can be observed only by looking at the high-order velocity
structure functions.
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The most interesting aspect of fully developed turbu-
lence is the existence of universal scaling behavior of
small-scale Iluctuations [1]. Indeed, turbulent Ilows are
characterized by the presence of self-similarity in the in-
ertial range, that is, on the spatial scale A « f, « L (L is
the energy injection scale and A is the dissipative scale).
In this range fluctuations reach an equilibrium state char-
acterized by a continuous flux of energy from the scale L
up to A, which can be viewed in the real space as an en-

ergy cascade generated by the breakdown of eddies at dif-
ferent length scales (Richardson's energy cascade). The
main statistical feature has been evidenced by Kolmogorov
[2,3], who derived the well known relation

aV, —.,'"r'I' (I)
between the velocity differences AVE = ~V(x + 8)—
V(x) ~

across the distance f, =
~Z~ [V(x) being the velocity

field] and et, which represents the energy transfer rate
per unit mass [4]. The same picture can be extended to
magnetohydrodynamic (MHD) turbulence, even if, owing
to the decorrelation effect of the large-scale magnetic
field [5], the nonlinear interactions are lowered. This
originates the Kraichnan scaling relation

~V, —(c„«) i'~'I' (2)
(c~ = Bn/$47r p is the Alfven velocity of the large-scale
magnetic field Bo and p is the constant plasma mass
density), which is valid for hydromagnetic flows. The
interesting measurable quantities are the qth order velocity

structure function Se = (BVe) (brackets denoting space(q) q

average) and the scaling exponents $~ defined through
~(q) (3)

which must hold in the inertial range [2,3]. In the absence
of intermittency the linear scaling laws hold, seq = q/m
(I = 3 for the Kolmogorov scaling law and I = 4 for
the Kraichnan scaling law). If intermittency is taken into
account, anomalous scaling laws are obtained where the
scaling exponents g~ are nonlinear functions of q both in
fluid flows [6,7] and in MHD Ilows [8—10].

Cascade models based on Richardson's picture have
been developed in order to take into account intermittency
corrections to the classical scaling laws, in both the fluid
[11—14] and the MHD case [10,15—17]. Among others
She and Leveque [14] developed a model based on the
hypotheses that the Kolmogorov refined similarity (1) is
verified and that the moments of the energy transfer rate
obey a given hierarchy

(q+ 1)
E'g (4)

(0 ( p ( 1). The quantity et, obtained from the( )

hierarchy in the limit q ~ ~, is associated with the most
intermittent structures. It has been conjectured that this

quantity has a divergent scaling e~ —4 . On the basis
(oo)

of relation (2), and assuming the same hierarchy (4), the
model has been extended to MHD by Grauer, Krug, and
Marliani [16] and independently by Politano and Pouquet
[17]. An expression for the scaling exponents valid in
both cases can be derived as

$q= —(1 —x)+C 1 — 1 ——
ffl C

(5)

where C = x/(1 —p) represents the codimension of the
most intermittent dissipative structures. In the "standard"
cases the parameters x and p turn out to be functions
of I [14,16,17], say x = P = 2/m. The Iluid case is
obtained choosing m = 3, i.e. , x = 2/3, and the most
intermittent structures are represented by filaments C = 2
[14]. In MHD we must assume m = 4 so that x = 1/2
and C = 1. In this case the most intermittent structures
turn out to be planar sheets [16,17].

When relation (3) holds, i.e., in the inertial domain,
the structure functions are not independent, rather the qth
structure function is related to the pth one through

S,"1 = ~(,,) [S,l "]'1 1 (6)

with n„(q) = g~/g„. In Iluid flows both Eqs. (3) and
(5) furnish s3 = 1, so that in the inertial domain the
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f(~V~) = dk exp(ik6Vr)

Qo

X g '
A(„, ) [5","']"11. (8)

0 2~q!

If the scaling exponents and the coefficients A(p, q) for the
fluid and MHD turbulent flows were indistinguishable, this
could be an indication of the existence of a universal non-
Gaussian probability distribution function valid for both
fluid and MHD velocity differences BVr [22]. Theoreti-
cal models [12—17] provide different scalings. But when
we plot n4(q) = s~/g4, obtained from Eq. (5), respec-
tively, for m = 3 (Auid flows) and m = 4 (MHD flows),
we can see that the curves are practically superposed as far
as q ~ 8 and only for q ~ 10 do they separate out (see
Fig. 1). From a physical point of view, according to the
She and Leveque model [14,16,17], a difference between
ordinary fluid flows and MHD flows is due to the differ-

relation ns(q) =
g~ holds. Benzi et al. [18] verified

that in fluid flows, almost unexpectedly, a linear relation
between log5~ and log5~ extends well outside the inertial
range within the dissipative range, showing that Eq. (6)
has a more general validity than Eq. (3) (see Ref. [19]).
This feature, which allows for a very good experimental
determination of n3 (q) (here F is for fluid) has been called
extended self-similarity (ESS). The presence of ESS has
been shown, and the scaling laws have been derived in a lot
of different situations, say fluid flows and simple models
that mimic either Auid or MHD turbulence [20]. In MHD
Aows both Eqs. (3) and (5) give g4 = 1, so we expect
that n4(q) = g~ in the inertial domain [10]. ESS has also
been observed in the scaling laws derived from velocity
measurements in the solar wind MHD turbulence [21]. In
this last case the values of n4 (q) are determined with
a very good precision [21]. On the contrary the direct
experimental determination of $q through Eq. (2) in the
solar wind turbulence is rather difficult [8,9,16].

Even if one usually determines the scaling exponents
el 3 (q) in the Auid case and n4 (q) in the MHD case,
Eq. (6) shows that it should be possible to compare the
scaling laws obtained in the two cases by calculating, for
example, n4 (q) also from data obtained in fluid flows,
simply through

F
F Cl3 (q)

n3 (4)

So an interesting question is posed: are the scaling expo-
nents and the coefficients A(p, q) derived from experimen-
tal data through Eq. (6) really different for Auid and MHD
turbulent Aows, or rather does the relation (6) represent a
universal law valid in both cases with the same set of val-
ues for n„(q) and A(p, q)'? The knowledge of the scaling
exponents and of the coefficients A(p, q) is equivalent to
the knowledge of the probability distribution for the veloc-
ity differences through

I
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FIG. 1. We show the normalized scaling exponents gq/s4 vs

q obtained from both the fluid model [14] (full line) and the
MHD version of the same model [16,17] (dashed line).

ent topological properties of the most singular structures.
This difference is contained in the different values for the
parameter C in the models (5), and cannot be found in
other intermittency models [10,12,13,15]. Obviously the
difference becomes visible only when we look at the most
singular structures, that is, when we examine the high-
order scaling exponents, because higher values of q en-
hance the more singular structures.

In order to give an answer to the above-mentioned
question, we have collected scaling exponents from both
laboratory measurements (fluid Aows) and space data
(MHD flows). The scaling exponents s have been
obtained in laboratory flows, say turbulent jets, duct flows,
and wind tunnels. From these exponents the values of
n4 (q) can be derived, and are reported in Fig. 2. The
scaling exponents we used can be found in the literature
(see the caption of Fig. 2). For the MHD Aows we
used the scaling exponents s

D obtained by Burlaga
[8] from the solar wind turbulent velocity as measured
by the Voyager satellite at 8.5 AU (astronomical units).
Even in this case the values of n4 (q) are plotted in

Fig. 2. Moreover, we calculated the scaling exponents
from measurements of the solar wind velocity field from
the Helios 2 satellite in the inner heliosphere from 0.3 AU
up to 1 AU. In this case [21] ESS allows for a very good
direct determination of n4 (q) (see Fig. 2). Looking
at Fig. 2 it can be seen that for smaller values of q
the scaling exponents n4 (q) and a4 (q) follow the
same curve, while as q increases it can be noted that
the scaling exponents seem to belong to two distinct
populations. To show that this behavior is statistically
meaningful, we divide our data into two different samples.
The first sample is built up with the scaling exponents
n4 (q) coming from the solar wind measurements, and
the second sample is built up with the data n4 (q) coming
from laboratory measurements on ordinary fluid flows.
For each value of q we calculate the average values
for both samples, say p, (q) and p, F(q). Through a
t test we make inferences about the means of the two
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FIG. 3. We show the probability P[Ho(q)] of the hypothesis
Ho(q) that the two populations in Fig. 2, made with the
laboratory measurements and the solar wind measurements,
belong to a single sample with the same mean.

FIG. 2. We show the scaling exponents a4 (q) and n4 (q)
collected from different measurements both in ordinary fluid
flows and in the solar wind turbulence. Open symbols refer
to the solar wind measurements, while filled symbols refer to
laboratory measurements. Open squares, diamonds, and circles
refer to the analysis in the inner solar wind on the Helios
data from 0.3 AU up to I AU [21], respectively, during the
periods 81:00—83:00, 46:00—48:00, and 36:00—38:00. Open
triangles refer to the data by Burlaga [8] obtained in the solar
wind turbulence from the Voyager satellite measurements at
8.5 AU. Filled squares, diamonds, and circles refer to the
measurements by Anselmet et al. [6] on a turbulent jet and on a
turbulent duct flow. Filled triangles refer to the measurements
by L. Zubair (private communication) in a wind tunnel. Filled
crosses and reversed triangles refer to the measurements by
Meneveau and Sreenivasan [7] by hot-wire measurements in
wind tunnel, respectively, in the boundary layer and in the wake
of the cylinder. Finally filled stars refer to the measurements
by Benzi et al. [18] in wind tunnel. Superimposed, we reported
the fluid model (full line) and the MHD model (dashed line).

seems to be due to the topological properties of the most
intermittent structures, which appear to be filaments in
fluid flows and planar sheets in MHD flows. Our results
are in agreement with the different versions of the She-
Leveque model for intermittency in fluid flows, which is
the only model that takes into account the physical dif-
ference. Concerning the solar wind turbulence our results
show that measurements indicate a strong tendency to fol-
low the MHD scaling laws, even if [23] the small-order
scalings (including the usual spectral index) do not allow
for a meaningful distinction between the Kolmogorov and
the Kraichnan scaling laws.

We are grateful to C. Meneveau and L. Zubair who
kindly supplied us with their experimental data. We
are also grateful to H. Rosenbauer and R. Schwenn for
making the Helios plasma data available to us.

populations, for each value of q, by testing the hypothesis
Ho that the tvvo populations have the same mean

Ho(q):= tp "
(q) = p (q)) (9)

By using Satterthwaite's procedure, we have calculated
the probabilities P[H&(q)] that the hypothesis (9) is true.
This probability is shown in Fig. 3. As can be seen
P[Ho(q)] is about 0.7 for q ~ 7. This is in agreement
with what we expect, because the scaling exponents are
almost the same for low values of q and the difference
between the most intermittent structures in fluid and
MHD flows is not achieved for low values of q. For
8 ~ q ~ 10 the probability is about P[Ho(q)] = 0.1,
while for q ~ 12 the probability of accepting Ho falls
down to P[Ho(q)] = 10 . This indicates that for high
values of q the two populations are well separated, that
is, the complementary hypothesis Ht(q):= (p, (q) 4
p, (q)) is accepted with the very high probability 1—
P[H, (q)].

We are then led to the conclusion that there is a strong
probability that the low-frequency MHD turbulence in the
solar wind turbulence is physically different from turbu-
lence in ordinary fluid flows. The physical difference
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