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Restoration of Isotropy on Fractals
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We report a new type of restoration of macroscopic isotropy (homogenization) in fractals with
microscopic anisotropy. The phenomenon is observed in various physical setups, including diffusion,
random walks, resistor networks, and Gaussian field theories. The mechanism is unique in that it is
absent in uniform media, while universal in that it is observed in a wide class of fractals.

PACS numbers: 05.40.+j, 05.60.+w

In this Letter, we report a new type of restoration of
macroscopic isotropy (homogenization) in fractals with
microscopic anisotropy. The phenomenon is unique in that
it is absent in uniform media, while universal in that it is
observed in a wide class of fractals. We suspect that the
phenomenon is universal enough to be observed experi-
mentally, for example, in spin systems close to critical
points and various transport phenomena in fractal media.
We first discuss the Sierpinski gasket as an example of
finitely ramified fractals, where the calculations can be
performed explicitly. We then turn to the Sierpinski
carpet, an infinitely ramified fractal, and report on rigorous
results. We conclude by discussing an intuitive picture of
the mechanism. Some results of numerical calculations
are also presented.

We note that when we discuss "isotropy" for a determin-
istic regular fractal we mean invariance with respect to
(discrete) rotations that respect the structure of the fractal.

Resistor network on Sierpinski gasket. —In order to
illustrate the phenomenon of isotropy restoration, we
first concentrate on the simplest example of anisotropic
resistor network on the Sierpinski gasket, a typical finitely
ramified fractal. Let n be a non-negative integer, and
put 0 = (0, 0), a„= (2",0), and b, = (2" ', 2' '~3).
Consider the nth generation of the (pre-)Sierpinski gasket,
which is a triangle LOa, b, with self-similar internal
structure composed of triangles of side length 1, as
illustrated in Fig. 1. Each internal vertex has 4 bonds of
unit length attached. We associate a resistor of resistance
1 with each bond parallel to the x axis, and a resistor of
resistance r ) 1 with the remaining bonds. By repeated
use of the star-triangle relations (Y-5 transforms), this
nth level network can be reduced to a simple triangular
network (an effective network), with resistances R;(r) in
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FIG. l. Pre-Sierpinski gasket.

the horizontal bond Oa„and Ry(r) in the bonds Ob„and
a, b„By defin. ition, Ro(r) = 1 and Ro(r) = r Put.

H„(r) = Ry(r)/R,'(r).
H„(r) measures the effective anisotropy of EOa„b, com-
posed of resistance elements with the basic (microscopic)
anisotropy parametrized by r = Ho(r). Using the star-
triangle relations we obtain the following recursion rela-
tions for R; and R~:

2R„'R'„'(2R„' + 3Ry) (3R; + 2R'„')

(R„' + 6R„'R„+ 3R„)(R„' + 2R, )

y
R~ (2R, + 3RY)

R„+) =
R, + 2R~'
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We see from these formulas that in the anisotropic regime
[H„(r)» 1] the effective resistances satisfy the scaling
behavior

R, , (r) = 2R,'(r),
while in the isotropic regime [H„(r) = 1] we have

R„+,(r) = R„+)(r) = 3R„(r).
We also see that H„(r) in (1) satisfies H„+ ~ (r)
f(H„(r) '), where

f(x) = (4x + 6x )/(3 + 6x + x ) .

In particular, we see the restoration of isotropy,

lim H„(r) = 1 .

(3)

(4)
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FIG. 2. R;, (r) (lower plots) and R'„'(r) (upper plots) on the
pre-Sierpinski gasket for r = 100. The lines are the scaling
predictions (2) and (3).

Figure 2 gives the calculated behaviors of the effective
resistances. We see a clear signal of the two scaling
regimes (2) and (3). Using (4), we can calculate the rates
of restoration of isotropy. In the anisotropic regime, we
have H„+ ~ (r) = 4H„(r), while in the isotropic regime we
have H„+~(r) —1 = 5[H„(r) —I]. We can also calcu-4

late the scaling limit F(z) = lim„ f"((3/4)"z) = z—
(3/2)z + (39/14)z + . . ., where f" is the nth itera-
tion of f. For large r and large n [1 « n ( O(log(r)/
log(4/3))] we have H„'(r) = F((4/3)" /r). We can
prove by standard methods using (4) that the scaling limit
exists and that F is complex analytic in a neighborhood
ofz =0.

We can generalize the above consideration so that
the resistors parallel to Obp and apbp have different
values. If we denote the effective resistances parallel
to Oap, Obp, apbp by R, R„", R, respectively, we find
R„'+i ——(4K + R„+R," + R„')R„"(R„"+ R„')/(K + Rb +
R„') (R„' + R„" + R„'), where K = (R„' + R„)(R, +
R;) (R„' + R„')/2(R,"R," + R,"R„' + R„'R„') The corre-.
sponding formulas for R„+~ and R,'+& are obtained by
cyclic permutations of the subscripts. Restoration of
isotropy lim„R„"/R„' = lim„R„'/R; = 1 can be
proved in the generalized situation.

Restoration of isotropy is not observed in uniform me-
dia. To see this, consider a resistor network of regular
square lattice, whose horizontal (vertical) bonds are resis-
tors of resistance 1 (r). The ratio of the effective resis-
tances for the n X n size network in vertical direction to
horizontal direction is easily seen to be r, independently
of n. Thus the anisotropy for the resistor network of a
regular lattice is independent of scale. The restoration of
isotropy that we observe on the Sierpinski gasket is a fea-
ture absent on uniform media.

Related models on Sierpinski gasket. We described
restoration of isotropy in terms of resistor networks [1,2].
The phenomenon is also observed in various other physi-
cal setups, including random walk and diffusion [3,4] and
Gaussian field theories [5]. A related mathematical prob-
lem of the construction and uniqueness of diffusion on the
Sierpinski gasket is dealt with in [6]. We also remark that
there is another aspect in homogenization, that a diffusion
with microscopic irregularity restores macroscopic unifor-
mity, as studied in [7] for finitely ramified fractals. This
aspect, in contrast to what we deal with here, is not spe-
cific to fractals and has been known in Euclidean spaces.
(For other related references in mathematics literature, see
the references in [8].)

Restoration of isotropy on Sierpiriski carpet The.
finite ramifiedness of the Sierpinski gasket implies that
the recursion relations are finite dimensional, and the
analysis can be made explicitly. One might then wonder
if the isotropy restoration we found above is a special
feature of models on finitely ramified fractals. In [9]
we have proved a mathematical theorem for a class
of infinitely ramified fractals, which establishes that the
isotropy restoration is a universal phenomenon.

To state the result of [9], let n be a non-negative
integer, and consider the pre-Sierpinski carpet F„, which
is a subset of a unit square [0, I] X [0, I] obtained by
removing small squares recursively as for constructing
the Sierpinski carpet [10], until squares of side length
3 ' are reached, where we stop so that smaller scale
structures are absent (Fig. 3). Let r ) 1, and assume that
F, is made of a material with a uniform but anisotropic
electrical resistivity, such that for a unit square made of
this material the total resistance is 1 in the x direction and
r in the y direction, and the principal axes of the resistivity
tensor are parallel to the x and y axes. Equivalently, we
assume that the energy dissipation rate per unit area for
the potential (voltage) distribution v(x, y) is (Bv/Bx) +
r '(Bv/By) . (Note that by linear transform in coordinate
y' = y Jr the formula becomes that of isotropic material.
Hence, in an experimental situation, one may as well
start with a rectangle made of isotropic material, with
rectangular holes. )

We introduce the effective resistance R„(r) of F„
in x direction, the resistance observed when we apply
voltage between two edges x = 0 and x = 1. Likewise
we define RY(r) and introduce the effective anisotropy
H, (r), as in (1). Hn(r) = r parametrizes the anisotropy

3043



VOLUME 75, NUMBER 17 PH YS ICAL REVIEW LETTERS 23 OcToBER 1995

the vertical direction. The results stated above for the
board F, also hold for the network G„.

Ideas for a proof of the theorem —. Theorem 1 is
proved by decomposing the problem into the isotropic
regime and the anisotropic regime. For the isotropic
regime, an extension (to the anisotropic case) of a deep
renormalization group-type analysis of effective resistance
for the isotropic Sierpiiiski carpet [2,11] is applied, while
for the anisotropic case a renormalization group-type
picture in the neighborhood of degenerate fixed points [3—
5] holds. One of the key observations for the proof of
Theorem 1 is that if H, (r) is very large (in the anisotropic
regime) then H„(r) follows a scaling behavior. We can
prove the following.

Theorem 2. The limits

lims ' lim infH„((9/7)'s) = Iims ' lim supH, ((9/7)" s)

0
FIG. 3. Pre-Sierpinski carpet F3.

of the material composing F„. We can prove the
following [9].

Theorem 1. There is a finite constant C ~ 1, inde-
pendent of r and n, such that for any initial anisotropy
r ) 0 we have the weak restoration of isotropy (weak ho-
mogenization) in the sense that I/O ~ H„(r) ~ C holds
for sufficiently large n (How . large n should be depends
on the value of r).

We believe that C can be taken arbitrarily close
to 1, as in (5), but this is still beyond the reach
of present mathematical techniques, for the infinitely
ramified fractals. We emphasize that we have concrete
rigorous results as Theorem 1, in spite of the difficulties
for the infinitely ramified fractals.

Analogous results hold if we consider a cross-wire
network G, defined by replacing each smallest size square
of F, by a horizontal and a vertical cross wire of four
resistors (connected at the center of the square), whose
resistances are 1/2 in the horizontal direction and r/2 in

exist.
This result says that, while s = (7/9)" r and n are

large, H„(r) decreases like c (7/9)" r We can pro. ve these
theorems by giving bounds controlling the n dependence
of the effective resistances [9]. Roughly speaking, we can
show that in the anisotropic regime [H„(r)» 1]

R„"+,(r) = 2R„'(r),

while in the isotropic regime [H„(r) = 1] R,'+i(r) =
pR„'(r) and R„+i(r) = pR~(r). Here p = (1.25148 ~
1) X 10 s is the growth exponent for the effective
resistance in the isotropic case r = 1 [2,11].

Based on these results, we conjecture that (5) holds also
for the Sierpinski carpet, and that Fig. 2 schematically
gives the behaviors of R„'(r) and R~ (r)

Discussions. Our mathematical results are not very
sharp numerically; we can only say that 10 ' ( H„(r) (
10', for large n. Numerical calculations for the Sierpinski
carpet may therefore be of interest. We give results for the
resistor network G„. Obviously, Ro (r) = 1 and Ro(r) =
r It is not diffic. ult to find Ri (r) = (3r + 4)/(2r + 3).

!

The exact result for n = 2 is

324r~ + 3960r + 17169r + 37077r + 44639r + 30842r + 11900r + 2325r + 174
Rz(r) =

144r + 1924r7 + 8850r + 20052r + 25146r + 17976r + 7128r + 1422r + 108

Note that RY (r) = r R, (1/r), with which we can calculate
R '(r) a-,nd H„(r) from these formulas. We have numer-
ical results for 3 ~ n ~ 7, obtained using the Gaussian
relaxation method (Table I). We see that as r is increased
the n dependence of R;(r) rapidly approaches (3/2)", and
that for large n those of RY(r) approach c (7/6)' with
c = 6/5. These observations are consistent with (6), im-

plying scaling behavior in the anisotropic regime. (Devia-
tion from scaling of R-' for small n in the data can be ex-
plained if we notice that we are calculating the network G„
instead of the board F, )In particular, we .see that, for

any value of r ) 1, R /R~nm„ot oi onllycadecreases as n

is increased, which indicates the tendency of restoration of
isotropy.

We expect that the scaling limit

z lim H„((9/7)'/ )z= c + dz +

exists, where c is the limit in Theorem 2. The data and the
fact that R„'(r) is a rational function of r make it possible
to find an estimate

R„(0) = lim 'R„( ) = c(7/6)" —3 "/5
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TABLE I. Effective resistances R„'(r) and R„'(r) for the pre-Sierpinski carpet network 6„.
r = 1000 r = 10000 r = 100000

n R„(r) R'„(r) R„'(r)
3 2.831 057 19.641 49 3.238 145
4 3.798 415 23.478 25 4.614455
5 5.070 868 28.10055 6.524 220
6 6.742 934 33.691 36 9.185 975
7 8.933 314 40.466 72 12.883 75

R'„(r)
190.6445
224.0274
263.1750
309.3891
364.0724

R„'(r)
3.356 806
4.963 201
7.258 880

10.566 35
15.340 37

R „'(r-) R„'(r)
1899.017 3.373 110
2223.085 5.049 858
2598.702 7.524 180
3037.488 11 ~ 148 79

R,'(r)
18 982.35
22 209.29
25 934.86
30 272.61

R;(r)
3.374 810
5.061 194
7.585 124

11.342 44

R„'(r)
189815.7
222 070.3

with c = 6/5. Thus the constant term c in the scaling
function is determined. We need more data to determine
d, but the calculations rapidly become time consuming as
n or r are increased.

Let us discuss the general intuitive picture of the
restoration of isotropy, in terms of random walks [3,4].
The fractals may be regarded to have obstacles or holes
in space, when compared to uniform spaces. Intuitively,
a random walker that favors horizontal motion performs a
one-dimensional random walk between a pair of obstacles,
and eventually is forced to move in the off-horizontal di-
rection before he could move further horizontally. There
are obstacles of various sizes, separated by distances of
the same order as their sizes, hence, globally, the ran-
dom walker is scattered almost isotropically. On uniform
media, such as regular lattices or Euclidean spaces, these
obstacles are absent, hence the anisotropic walk keeps
anisotropy asymptotically.

The Sierpinski gasket and the Sierpinski carpet have
exact self-similarity, and one may doubt the "extrapola-
tion" to figures without exact self-similarity. However,
we can prove that the restoration of isotropy occurs for
anisotropic diffusions on the scale-irregular abb gaskets,
a family of fractals that are scale irregular, i.e. , do not
have exact self-similarity [4]. These considerations sug-
gest that the restoration of isotropy is to be observed on
a wide class of random media. For example, numerical
calculations on the percolation clusters may provide inter-
esting observations.
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