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Weak Levitation of 2D Delocalized States in a Magnetic Field
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The deviation of the energy position of a delocalized state from the center of a Landau level is studied
in the framework of the Chalker-Coddington model. It is demonstrated that the introduction of weak
Landau level mixing results in an upward shift of the delocalized state in energy. The mechanism of
a levitation is a neighboring-Landau-level-assisted resonant tunneling which "shunts" the saddle points.
The magnitude of levitation is shown to be independent of the Landau level number.

PACS numbers: 73.20.Jc, 73.40.Hm

It is commonly accepted that the electronic spectrum of
a two-dimensional disordered system in a strong magnetic
field contains only a single delocalized state per Landau
level (LL). First conjectured by Halperin [1], this con-
clusion was later drawn from scaling ideas [2,3] and con-
firmed by numerical simulations [4—6].

To make this conjecture consistent with the absence
of delocalized states at zero field (B = 0), Khmelnitskii
[7) (see also [8]) suggested that with decreasing B the
energy positions of delocalized states depart gradually
from the centers of LL and Goat toward infinity as
8 ~ 0. To obtain the positions of delocalized states,
E„(B),Khmelnitskii pointed out that the system of scaling
equations [2] for conductivities, o., and cr,Y, should
be solved together with the boundary conditions that
at small scales the conductivities are given by their
classical expressions: o.," = pro(1 + to, r ) ' and o„"
croco 7 (1 + to, r ) ', where ere is the Drude conductivity
(proportional to the Fermi energy EF), co, is the cyclotron
frequency, and ~ is the elastic scattering time. Since
the scaling equations are periodic in cr ~, it follows that
o, (EF) remain. s finite at large scales each time when
tr" = (n + 1/2)e /2~h. This gives E„= hco, (n +
1/2) [1 + (to, r) j. The levitation of the delocalized
states according to [7,8] is sketched in Fig. l.

The above dependence E„(B),treated as a dependence
of p = oo vs the inverse filling factor v ', is, in
fact, an essential constituent of the global phase diagram
of the quantum Hall effect (QHE) [9]. The behavior
of the p, (p ') boundary between the insulating and
quantum Hall states, which follows from the selection
rules derived in [9], represents, in fact, the generalization
of the levitation scenario to the case of strongly disordered
and interacting 2D gas. Recent experiments [10—13],
in which an insulator —quantum Hall conductor —insulator
transition was observed with increasing magnetic field
were interpreted in terms of the global phase diagram [9]
as follows: the horizontal line, EF(B) = const, crosses the
curve Eo(B) at two different values of B, so that for B
between these values the system is in the QHE regime,
while for smaller or larger 8 it is in the insulating phase.
The latest experiment [14] allowed a direct measurement

of the Erj(B) dependence by tracing the positions of
peaks in o. , which were measured as a function of
gate voltage for different magnetic fields. The measured
dependence Eo(B) exhibits a minimum in the region of
B where spin levels are not resolved (the results of
similar measurements on Si metal-oxide-semiconductor
field-effect transistors are reported in [15]).

Numerical simulations [16] for short-range disorder
indeed indicated an upward (from E = hto, . /2) shift
of the energy position of the extended state when the
three lowest LL's were taken into account. However,
no microscopic theory for such a levitation has been
developed so far. In this Letter we develop such a theory
for the region where the departure of the delocalized state
from the center of the Landau band is relatively small. In
this case one can treat the LL mixing as a perturbation.
As a result of such a mixing, the resonant scattering
of an electron with energy near the center of LL by
localized states from neighboring LL becomes possible.
We demonstrate that it is this scattering that leads to the
levitation.

We consider the case of a smooth random potential and
adopt the network model of Chalker and Coddington (CC)
[17] (see also [18])which we generalize in order to study
the effects of neighboring LL. In this model, delocalization

FIG. 1. Schematic picture of the levitation of delocalized
states according to [7,8]. The straight lines correspond to
n = 0 and n = 1 Landau levels.
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results from the tunneling of an electron through the saddle points of a potential which are connected by equipotential
lines. The randomness of the potential is included by assuming the phase acquired by an electron traversing a link
(equipotential line) to be random. The amplitudes of incoming waves Zt and Zz and outgoing waves Z3 and Z4 (see
Fig. 2) are related as

'!=M
3) Z2) M=( 0 ~ coshO sinhO ~ e'~'

e'@' ) sinhO coshO ) 0
0

where the parameter O characterizes the tunneling and P;
are gauge phases. For the potential expanded near the
saddle point, V(x, y) = Vo —mA x /2 + mA y /2,
where m is the electron mass, this parameter can be
presented as [19]

sinhO = exp[(E —Vo)/y],

y = RA, Ay/7rcu, , (2)
where F is the energy of the electron measured from
the center of LL. Since the saddle-point heights, Vp,
are distributed symmetrieaOy around the value Vp = 0
[corresponding to O = O, —= ln(1 + ~2)], the delocalized
states occur at zero energy.

Now assume that the energy is close to the center of
the n = 0 LL and study the change in the structure of
electronic states caused by the n = 1 LL. The relevant
n = 1 LL states are those with energies close to the
center of n = 0 LL. The equipotentials corresponding
to these states are depicted schematically in Fig. 2 by
dashed loops. The prime role of these equipotentials is
to shift the maximum of the density of states up from
F = 0. However, such a shift does not affect the position
of the delocalized state unless a coupling between the
equipotentials of n = 0 and n = 1 LL is introduced. This
coupling is illustrated in Fig. 2(a). The line connecting the

!

equipotentials stands for a scattering matrix S defined as

s=(' 0 cosn —sinn ~ & e'@'
e'~ sinn cosu ) ( 0

p l
(3)

sin&@ sin n
tanB E

cosy(I + coszn) —2cosn (4)

The energy dependence of the phase 6 is determined
by the energy dependence of p. For a small coupling
the resonances occur at p = ~nz/2 + 2vrp (p is an
integer), the resonance width also being n /2. However,
these resonances are of no importance since the phase 6
can also be absorbed into the random phase on the link.

Such a form of S insures the conservation of Ilux !Z! +
= !Z'! + !Z'! . The coupling strength is character-

ized by an angle a (gauge phases in matrix S, as well as
in M, can be absorbed into the Z's). It is easy to see that
the only effect of such a coupling to a loop is a phase shift
between the amplitudes Z and Z'. Indeed, Z and Z' differ
by the phase factor acquired by an electron traversing the
loop: Z' = Ze'~. Then (3) yields Z = Z'e', with

The situation is completely different when a loop occurs
in the vicinity of the saddle point so that it is coupled
to both the incoming and outgoing links. It is important
to note that such a loop is not coupled directly to the
saddle point because there the gradient of the potential
is precisely zero. Tunneling between the loop and the
links occurs most favorably at a certain distance from
the saddle point, as illustrated in Fig. 2(b). Since the
characteristic tunneling distance at the saddle point is quite
small (typically, the magnetic length), we neglect the effect
of the loop on tunneling transparency at the saddle point.

Below, we demonstrate that the effect of such loops
is to shift the position of delocalized state upward. The
crucial observation is that the saddle point with the loops
attached to the links can be viewed as some modified
saddle point [see Fig. 2(b)] and thus is characterized by
a matrix M' with the same unitarity properties as M:

Ml 4 Ml p & coshO' sinhO' ~

e'&~ ) sinhO' coshO') 0

The new parameter O can be expressed via O and the elements of scattering matrices S; [see Fig. 2(b)] using the
following equations:

Consider for simplicity a case when all n; = n and there is only one loop (e.g. , S~ = S4 = 1). Then the solution of
(I), (5), and (6) reads

2sinh Ocos n(1 —cosy)
sinh 0' =

2 2 2[sing —sin n coshO sin(P —p)]z + [cosy —coszn + sin n coshO cos(P —p)]z
Here p [as in (4)] is the phase acquired by an electron traversing the loop while P is the phase acquired on the contour
Z2 Z3 Z5 [see Fig. 2(b)].
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S z' small n this average can be easily calculated analytically:

6Vo(0) = (n y/vr) [sinh0 + arcsin(1/cosh0)], (9)
where 0 is related to Vo by Eq. (2). We see that 6Vo(0)
is proportional to the width of the resonance, n, since it
is determined by resonant loops. Since 6Vo(0) is finite,
the average saddle-point height, Vo, moves from Vo =
0 to a finite value Vo = (6Vo(0))y„where ()v, stands
for averaging over Vo. The values of Vo, relevant for
delocalization, are of the order of y, the relevant E —Vo

being also of the order of y, so that the relevant 0 in
(9) is 0 —1. This leads to the following estimate for the
energy shift of the delocalized state:

~Eo —(Vo)

FIG. 2. Sketch of the saddle point. The full lines represent
equipotentials corresponding to n = 0 LL. The dashed circles
are equipotentials of n = 1 LL. (a) Scattering of an electron by
isolated loop (S stands for the scattering matrix). (b) Passage
of electron through the saddle point in the presence of loops
connecting the links.
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FIG. 3. The distribution function of 6V0 is shown at E = Vo
(0 = 0,) for n = 0. 1 (solid line), n = 0.2 (long-dashed
line), and n = 0.3 (dashed line).
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The conversion of the parameter 0 into 0' can be
viewed as an effective change in the height of the saddle
point, 6VO, caused by n = 1 LL:

BVo = —y ln(sinh0'/sinh0) .

The distribution function of 6 Vp, which comes from
averaging over the random phases p and P, is plotted
in Fig. 3 for different values of n. The narrow peaks at
small 6V0 originate from the values of cp that are not too
close to 2~p. Then it is easy to see from (7) that for such
cp and n «1 we have 0' = 0, and, consequently, 6VD
is small. At the same time, the tails of the distribution
come from the resonances y = 2~p. For such y we
may have both 0' ) 0 and 0' ( 0. It is important to
realize, however, that the tails are asymmetric, i.e., the
distribution function falls off slower toward large 6VO.
As a result, the average 6VO appears to be positive. For

where o. is the coupling strength averaged over the loops.
It can be seen that the shift is much smaller than a typical
saddle-point height: 8Eo/y —u~ && 1.

From a physical standpoint, the levitation (positive
6Eo) originates from the loops providing a direct trans-
mission between links [20], bypassing the saddle point.
Thus, in order to compensate the leakage of electrons to
the opposite link via the loop, the energy of the delocal-
ized state is raised upward.

In the derivation of (9) we neglected the effect of the
loop Z7 ~ Zs on the other side of the saddle point [see
Fig. 2(b)). It is easy to see, however, that the two loops
cause essentially an additive effect. Indeed, an electron,
traversing the link Zi, can also bypass the saddle point
due to a resonant transmission to the opposite link Z~.

The key point in the consideration above was that the
loops can occur only in directions of the descent of a
saddle-point potential (valleys), i.e., to the right and to
the left from the saddle point in Fig. 2(b). This is the
case when the effect of the n = 1 LL on the n = 0
delocalized state is studied. For the n = 1 delocalized
state the situation is more complicated: the loops from
the n = 2 LL occur in the directions of the valleys while
the loops from the n = 0 LL occur in the directions
of the hills. The latter loops cause an opposite trend,
pulling the delocalized state downward. The resulting
shift can be presented as BEt —y(n~2 —n2to). Note
that the coupling, n&2, of n = 1 to n = 2 LL is stron-

ger than the coupling, n&0, of n = 1 to n = 0 LL, due
to a larger size of the n = 2 wave function. Thus, 6Ei
is also positive. Another effect which we have neglected
is coupling of the n = 0 links via loops corresponding to
n = 0 equipotentials. Since these loops occur with equal
probability in all directions from the saddle point, it is
obvious that positive and negative contributions to 6EO
from these loops cancel each other out.

The effective coupling constants n, ,+ i are small if the
LL width is small, i.e., W «h~, . But even if W &&

h~„ the coupling can still be small since it is determined
by tunneling between equipotentials. A crude estimate
for a tunneling amplitude in this case, W » h~„can
be obtained as follows. The spatial distance between
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equipotentials is of the order of s = Iico, /(W/R, ), where
R, is the correlation radius of a smooth potential. This
corresponds to the momentum transfer q = s/I, where
l is the magnetic length. The coupling is efficient only
if q ( R, '; otherwise, the smooth potential would not
be able to provide the necessary momentum, and the
tunneling amplitude would be exponentially small. The
latter condition, qR,. ~ 1, can be rewritten as

h, ~ [W(h'/IR, ')]'I' —= r~,*.
Equation (11)requires that the magnetic field should not be
too strong; however, the quasiclassical picture of electron
motion along equipotentials still applies at cu, —cu,': for
such co,. we have l/R, —[(Fi /mR, )/W]'I « 1, which
is just the condition that the potential is smooth. On the
other hand, the use of the CC model is justified only if the
saddle point "discriminates" between neighboring LL, i.e.,
hen ~ y. Remarkably, the two conditions, cu, —co,

* and
Ilco, —y, coincide. Indeed, following [21], the parame-
ter y in (2) can be estimated as y —II(W/mR, )/co, —
Iico," /to, . Thus, the CC model is inadequate for co,. «

when the saddle point at Rro, (n + 1/2) becomes
transparent also for several neighboring to nth LL's; for
such fields one might expect strong levitation. Our con-
sideration applies for magnetic fields ~, ~ cu,"', when the
levitation is weak.

Let us briefly discuss the dependence of the coupling
on LL number n. This dependence is determined by
the overlap of nth and (n + 1)th Landau wave functions
shifted in space by a distance s. This overlap is known
to be proportional to e ' L,'(u) [u/(n + 1)]', where
u = s /2l and L„' is the Laguerre polynomial. If the
ratio co, /co,* = (qR, )' = (R,s/I )'I is not too large
(the coupling is not exponentially small), we have s &
l. Then it is easy to see that nz „ t

~ [ I (t)0] zn/~ n.
As a result, the levitation 6F„, which is proportional to

„+&
—n~, &, does not depend on n.

In conclusion, we have shown how the LL mixing gives
rise to an upward shift of the energy of the delocalized
state from the position Iito, (n + 1/2). In a smooth
potential the shift may be relatively small even when the
peaks in the density of states corresponding to different
LL are not well resolved (it can be seen from (11) that
Rco,*/W = [(Ii /IR, )/W]'I « 1).

The picture considered above was a single-particle pic-
ture of delocalization. We have completely neglected the
effects of screening caused by electron-electron interac-
tions. At the same time, it is known that in a smooth
potential the electron-electron interactions drastically af-
fect the distribution of electrons within the plane. In
fact, when the potential is very smooth, the equipoten-
tials we have dealt with are separated by incompressible
strips [22]. In this situation one should speak not about

the energy position of delocalized state but rather about
the critical filling factor at which delocalization occurs. It
was argued in [18] that by replacing equipotentials with
edge excitations, the many-electron problem can be effec-
tively reduced to the CC model. In the framework of this
scenario our theory predicts that the critical filling factor
is larger than n + 1/2 due to LL mixing.
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