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We describe some properties of consistent sets of histories in the Gell-Mann —Hartle formalism,
and give an example to illustrate that one cannot recover the standard predictions, retrodictions, and
inferences of quasiclassical physics using the criterion of consistency alone.
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Standard quantum theory, in the Copenhagen interpre-
tation, gives a robust and successful algorithm for predict-
ing the results of laboratory experiments. (For definiteness
consider the version of the Copenhagen interpretation set
out by Landau and Lifschitz [1].) It has, however, nothing
to say about the larger quantum universe outside the lab-
oratory, since its subject is solely the results of measure-
ments made by some classical measuring apparatus whose
existence is taken as an a priori assumption. New theo-
ries which make predictions without this last assumption
would be of great interest, since they would have greater
predictive power.

The consistent histories approach of Griffiths, Omnes,
Gell-Mann, and Hartle has been suggested to be just such
a development, extending the Copenhagen interpretation
[2—5] and allowing us to make predictions in quantum
cosmology where the quantum system is the whole Uni-
verse [6—8]. It is a formalism from which, it is hoped,
the largely classical world of our experience might be de-
duced, rather than assumed. Thus, our observations of
large-scale classical structure in the Universe, of macro-
scopic objects following classical equations of motion,
and of definite classical outcomes to quantum experi-
ments, are all supposed to be predictions, uncondition-
ally derivable from the formalism. If these hopes were
to be realized, the consistent histories approach would in-
deed have provided a significant increase in our predictive
power. They rest, however, on as yet incomplete interpre-
tational arguments and have naturally led to much debate
[9,10]. Our own arguments, together with a critique of
the existing literature, will be given in detail elsewhere
[11]. Our aim here is to draw attention to some perhaps
counterintuitive properties of consistent sets of histories,
most of which have not previously been discussed in any
detail in the consistent histories literature, and to explain
their physical relevance.

The consistent histories formalism —We begin with a.

brief description of the consistent histories formalism as
it applies to nonrelativistic quantum mechanics, in the
Heisenberg picture, using the language of projection op-

erators and density matrices. We assume that a Hilbert
space 9f and Hamiltonian H are given, that Hermitian
operators correspond to observables, that the commutation
relations among the Hamiltonian and physically interest-
ing observables (such as position, momentum, and spin)
have been specified, and that the operators corresponding
to the same observables at different times are related by

P(t) = exp(iHt/fi)P(0) exp( —iHt/h) . (1)
We are interested in a system (in principle, the Universe)
whose initial density matrix p; is given. We require that

p; is positive semidefinite. The formalism also allows a
final condition to be imposed, an interesting generalization
of standard quantum theory, though we shall not consider
that possibility explicitly here. The basic physical events
we are interested in correspond to sets cr of orthogonal
Hermitian projections I' ', with

yP' = landP'P' =6 P' (2)
l

These projective decompositions of the identity are ap-
plied at definite times, which we append to the sets of
projections: thus o~(tz) = (P&, i = 1, 2, . . . , n~]t defines(t)

a set of projections obeying (2) and applied at time t,
However, since our results depend only on the time order-
ing, we will generally omit explicit time labels. Suppose
now we have a list of sets o~(tj) of this form, with j run-

ning from 1 to n, at times t~ with t; ( t] ( . ( t„(
tf. Then the histories given by choosing one projection
from each o~ in all possible ways are an exhaustive and
exclusive set of alternatives S. We use Gell-Mann and
Hartle's decoherence condition, and say that the histories
form a consistent set if

Tr(P„'', . . . , P,"p, P„'&',. . . , P1& ') = a„„,. . . , a, ,
x p(i), . . . , i.),

(3)
in which case p(i~, . . . , i„)is the probability of the history

P~, . . . , Pn" . [Gell-Mann and Hartle term is a set(1 1 ) (l'. )

satisfying (3) medium decoherent].
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We say the set

is a consistent extension of a consistent set of histories
S = (p;, (o.&, . . . , o.„))by the set of projections r = (Q':
i = 1, . . . , m) if r satisfies (2) and S' is itself consistent.
We say the consistent extension S is trivial if, for each his-

(ii ) (4) (4+1) (~n)
tory (P~, . . . , Pk, Pl, +~, . . . , Pn" ) in S, at most one of
the extended histories (P~, . . . , Pk, Q', Pk+ &, . . . , Pn" )

(i 1) (4); (4+ l) (~, )

has nonzero probability. We extend these definitions by
taking consistent extension and trivial consistent extension
to be transitive relations.

Counting consistent sets. —Let us now take the Hilbert
space A to be of finite dimension N and ask: How many
consistent sets are there? We first describe how consistent
sets may be classified. The basic objects in the formalism
are the projective decompositions of the identity o.

~
=

(P~: i = 1, 2, . . . , n~), where the P~ satisfy (2). These
(i) (I)

decompositions are parametrized by the set of ranks

(r~, r, , . . . , r,
'
) of the projection operators, where

N = P;=~ r~ and we take r~ ~ r, ~ . . . r~, and the
())

manifold

G(N; r~, rj, . . . , r~
'

) = U(N)

[U(r ) X U(r ) X . . X U(r ')] X 1

J is a discrete symmetry group that eliminates overcount-
ing when some of the ranks are equal.

The parameter space of a set of histories is then a
manifold M, which is a product of such G's, one for each
projective decomposition o.k, k = 1, 2, . . . , n (i.e., one for
each time, tk): M = G& x . x G„.

It is easy to use this parametrization in explicit calcula-
tions: One can define projections (P~'l, . . . , P "& ) of ranks
(r(', r(2, . . . , r("&)j by choosing an orthonormal basis of
vectors (x~, . . . , x„),so that

I"
l +12

P' = gx(x)t, P( = P x(x;)t, (6)
i=1 1 —I 1

+ 1

and so on. The redundancies in this parametrization
correspond to the actions of the quotient subgroups, and
can be eliminated at any convenient point. This can
be done each time. Thus, in principle, we can simply
fix the form of the initial density matrix, fix the ranks
of the projection operators in the type of consistent set
we wish to classify, and then impose the consistency
conditions (3). These will be algebraic equations defining
a submanifold L, the submanifold of consistent sets of the
manifold of all sets of histories M.

While these algebraic equations are generally very
complicated, one can at least make educated guesses
about the qualitative features of L, such as its dimension,
and these guesses can be checked in simple examples.
A typical physical illustration of the consistent histories
formalism would involve a small number of projection
operators, describing quasiclassical operators in a large
Hilbert space. One might, for instance, describe a coarse-
grained trajectory of a dust grain, interacting with a
photon background. Such physical projection operators
rarely form a precisely consistent set. , and there has
been debate over whether or not it is possible to find
close approximations to the projection operators which are
exactly consistent. Comparing the number of parameters
used to specify sets in M (very large) with the number
of consistency equations (rather small) suggests that this

is generically possible. If so, there is no need to follow
Gell-Mann and Hartle in ascribing a fundamental role
to approximately consistent sets: exactly consistent sets
suffice. Moreover, the counting arguments show that in
any physically realistic situation the dimension of I, the
space of consistent sets, is very large.

Properties of consistent sets So, let . us suppose that
physics is described by exactly consistent sets and look at
what this implies. We omit proofs, which can be found
in Ref. [11].

Lemma /. Let S = (p, (a.~, . . . , ok)) be a consistent
set which is not a trivial extension of any consistent subset,
defined on a space A of dimension N, with initial density
matrix p of rank r Then the le.ngth k of S obeys k ~ rN.
(In particular, if p is pure then k ~ N )(A similar . result
has been obtained independently by Di6si [12].)

In other words, if the Hilbert space of the Universe is
finite dimensional, there is a strict bound on the number
of probabilistic physical events. Once this number has
occurred, the evolution of the Universe continues com-
pletely deterministically. This is mathematically an un-

surprising feature of the formalism but, as far as we are
aware, physically quite new: No previous interpretation
of quantum theory has suggested that quantum stochastic-
ity is exhaustible in this way.

In the consistent histories approach, predictions can
only be made once a consistent set —the physically rele-
vant set —is fixed. The key problem in interpreting the
formalism is explaining how, given the profligate abun-
dance of consistent sets, this is to be done. Once the
choice has been made, one can simply declare by fiat that
physics should be described by one history from the rel-
evant set, chosen at random using the decoherence func-
tional probability distribution. Again, the key question is
whether the choice has been made within the formalism
or whether it relies on assumptions that go beyond it.

It thus becomes an important question whether, when
some of the projective decompositions in the relevant set
are known, others can be determined. In particular, if,
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taking the past and present for granted, we were able
to deduce the form of the relevant set in the future
using only consistency criteria, then we could indeed
make unconditional predictions about the future within the
consistent histories formalism: The choice of set would
be clearly determined by the formalism. This, though, is
generally false.

Lemma 2.—Let S be a set of consistent histories for
which there exists a nontrivial consistent extension. Let
S have a pure initial state p, and let A be either finite
dimensional or separable. Then there exists a continuous
family of nontrivial extensions for each history in S with
nonzero probability.

So, if a consistent set describing a physical system up to
time t leaves some future events unpredictable, there are
infinitely many different consistent continuations of that
set. In particular, if a consistent set describes, in Gell-
Mann and Hartle's language, quasiclassical physics—
involving operators describing the same types of variables
at different times, following largely deterministic evolu-
tion equations —up to time t then, if any unpredictability
remains, almost all future consistent continuations will not
be quasiclassical. Whatever our experience of a persis-
tently quasiclassical world may be ascribed to and there
are various suggestions [11]—it does not follow simply
from consistency.

Still, one might hope that at least, if the setup to time
t is quasiclassical, then any nonquasiclassical consistent
future extension can consistently incorporate future de-
terministic quasiclassical predictions. Indeed, Omnes has
suggested that this is so [5]. But in fact, as Omnes now
accepts, this fails quite generally. If unpredictability re-
mains, then there are no future predictions consistent with
all consistent extensions of the present data.

Lemma 3. Let S = (lg)(gl, (o.i, . . . , o.i)) be as
in Lemma 2, with A finite dimensional or separa-
ble. Then there is no projective decomposition o~+i
such that (i) S' = (p, (vari, . . . , o.t, o.t+i)) is a consis-
tent extension of S and (ii) any consistent extension
S" = (p, (o.i, . . . , o.i, ri, . . . , r„))of S has a consistent
extension (p, (vari, . . . , o.i, xi, . . . , 7„o-i+i)).

We have only been able to identify one class of state-
ments which can consistently be added to any consistent
extension of a set. These arise where the set contains
the same decomposition twice. In this case, further rep-
etitions can be included, provided that they are made be-
tween the first two.

Lemma 4 Let S = (p., (si, . . . , sj, t, ti, . . . , ti, t, s~~ i,
. . . , sk)) —= (p, (Si, t, T, t, S2)) be a consistent set in which
the projective decomposition t is repeated. Let S' =
(p, (Si, t, Ti, t, T2, t, S2)) be an extension of S by a further
repetition of t at some point between the first two, so that
(T) = (Ti, T2). Then S' is also consistent.

Put picturesquely, if a tree is observed standing in
the forest at dusk and dawn, and if the dynamics cause
no qualitative complications, then the formalism allows

us unambiguously to deduce that it remained standing
overnight while unobserved.

A simple example illustrates the weaknesses of the con-
sistency criterion. Consider two systems, described by
two-dimensional Hilbert spaces V and W, with orthonor-
mal bases (vi, v2) and (wi, w2). We suppose that the to-
tal Hamiltonian is zero except between times t = t~ and
t = t2, during which the systems are coupled by an in-
teraction which models a measurement process. Specifi-
cally, we take the unitary evolution operator between
these times to be the operator U defined by

Ulvi) lwi) = lvi) lwi), Ulv2) lwi) = lv2) lwi),

Ulvi) lw2) Iv2) lw2), Ulv2) lw» = —I») lw2), (7)

and we take p; = 1vi) (vi 1
S I In this m. uch simplified

(and unrealistic) model, V represents the relevant degrees
of freedom two "pointer positions" —of a measuring
device examining a two-dimensional microscopic quan-
tum system represented by W. We have chosen p; so
that the initial pointer position is specified and no infor-
mation is known about the system W, which might, for
example, be a spin-2 cosmic ray.

Now consider an experiment in which the pointer is
observed to be in state lvi) at time t3 ) t2, so that
the combined system lies in the range of the projection
P = lvi)(vil iS I The stan.dard description of this ex-
periment would distinguish between the macroscopic sys-
tem V, which follows classical dynamics after t2 and the
microscopic system W, which is observed at time t3 to
be in the state lwi) and thereafter follows the Schrodinger
equation. Now the consistent histories description of the
observation uses the set S defined by the single projective
decomposition (P, 1 —P) at time t3, and specifically the
history from that set defined by P.

However, none of the standard inferences drawn from
the observation can be made using the consistency criterion
alone: We cannot deduce that the pointer was in state
lvi) at times between t2 and t3 or after time tq (as
classical mechanics would imply), nor that the system
was in state lwi) after ts (as standard quantum mechanics
would imply). The reason is that in each case we can find
a consistent extension of S with which the inference is
inconsistent.

For example, let Q be the projection I
1 w)(w 1

onto
the state lw) = (lwi) + lw2))/~2 and R the projection
I S lwi)(wi l. Then the set ((P, 1 —P)(t3), (Q, 1—
Q)(t)) is consistent. (We now include explicit time labels
and take t3 ( t ( t'. ) However, since the extended set
((P, 1 —P)(ts), (Q, 1 —Q)(t), (R 1 —R)(t')) is inconsis-
tent, we cannot infer that the quantum mechanical system
W is in state lwi) at any time t' ) t3. Essentially the
same argument shows that this inference cannot be made
at time t3. In other words, the observation of a pointer
state does not imply the result of its measurement in the
usual way. Similar arguments show that we cannot infer
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that the pointer itself is in state i v 1 ) at any time other
than t3.

In conclusion, these results illustrate interesting features
of the consistent histories formalism. Those who prefer
their fundamental theories to be mathematically precise
will be encouraged that the use of approximately consis-
tent sets can apparently be avoided. On the other hand, it
will be seen that consistency itself is a very weak condi-
tion: There is generally a large variety of consistent sets.
We stress that this does not mean that the consistency
criterion is incompatible with experiment. Many care-
ful studies have illustrated the efficiency of the decoher-
ence process and its crucial importance in understanding
the dynamics of quasiclassical systems. (See, for exam-
ple, the decoherence calculations of Ref. [13].) Assuming
that quantum theory holds good as a description of macro-
scopic systems, the moral to be drawn from these studies
is that, in any realistic description of an experiment, one
of the consistent sets will correctly describe familiar qua-
siclassical physics and will allow the standard predictions
and inferences.

The problem here is that all consistent sets have the
same status in the formalism, most have very little to do
with the quasiclassical world of our observations, and we
can make the predictions we would like to make only after
we have made the choice of one particular set: the familiar
quasiclassical one. If the consistent histories formalism
is to represent an enhancement in predictive power over
the Copenhagen interpretation, it requires intepretational
arguments that show this choice to be determined by the
formalism. Omnes' interesting attempt [4,5] to find a
mathematical criterion that correctly identifies the relevant
set, unfortunately, fails. The remaining arguments in
the literature [6,7] which suggest that the formalism
nonetheless does explain the observed persistence of
quasiclassicality therefore deserve careful scrutiny. Our
own conclusion [11] is that they rely on important hidden
assumptions.

We thank the Aspen Institute for their hospitality in the
formative stages of this work. F. D. thanks, in turn, the
Newton Institute in Cambridge for their hospitality during
part of this work. F. D. was supported by NSF Grant
No. PHY-9008502; A. K. by a Royal Society University
Research Fellowship. It is a pleasure to thank Murray
Gell-Mann, Robert Griffiths, and Roland Omnes for
invaluable discussions of their work. We are particularly
grateful to Jim Hartle for many helpful and stimulating
discussions.

[1] L. D. Landau and E.M. Lifschitz, Quantum Mechanics
(Non relativis-tic Theory) (Pergamon Press, New York,
1977), 3rd ed.

[2] R. B. Griffiths, J. Stat. Phys. 36, 219 (1984).
[3] R. B. Griffiths, Found. Phys. 23, 1601 (1993).
[4] R. Omnes, J. Stat. Phys. 53, 893 (1988); 53, 933 (1988);

53, 957 (1988); 57, 357 (1989).
[5] R. Omnes, Rev. Mod. Phys. 64, 339 (1992).
[6] M. Gell-Mann and J.B. Hartle, in Complexity, Entropy,

and the Physics of Information, SFI Studies in the Sciences
of Complexity, edited by W. Zurek (Addison Wesley,
Reading, 1990), Vol. III.

[7] M. Gell-Mann and J.B. Hartle, in Proceedings of the
NATO Workshop on the Physical Origins of Time Asym
metry, Mazagon, Spain, September 30—October 4, 1991,
edited by J. Halliwell, J. Perez-Mercader, and W. Zurek
(Cambridge University Press, Cambridge, 1994).

[8] M. Gell-Mann and J.B. Hartle, Phys. Rev. D 47, 3345
(1993).

[9] B. d'Espagnat, J. Stat. Phys. 56, 747 (1989).
[10] J. Halliwell, Imperial College Report No. IC/93-94/52 (to

be published).
[11] F. Dowker and A. Kent, "On the Consistent Histories

Approach to Quantum Mechanics, " J. Stat. Phys. (to be
published).

[12] L. Di6si, Report No. gr-qc/9409028.
[13] E. Joos and H. D. Zeh, Z. Phys. B 59, 223 (1985).

3041


