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Nonreciprocal Optical Rotation in Antiferromagnets
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We consider nonreciprocal optical effects in classical Neel antiferromagnets, where the purely
macroscopic electrodynamics does not provide any rotation. The nonzero result appears as a
correction linear in the scattering theory parameter a/A, atomic distance over wavelength. The recent
experiment on Cr203, where optical nonreciprocity already exists with the macroscopic approach, is also
discussed.

PACS numbers: 78.20.—e, 75.50.Ee

In the last five years a number of attempts were made
to detect time-parity violation in high-T, superconductors,
predicted within some theoretical models by measuring
nonreciprocal optical rotation [1—3]. All of these attempts
failed, but meanwhile nonreciprocal optical rotation was
observed for the first time in a conventional antiferromag-
net [4]. The general restrictions on nonreciprocal optical
refIection and transmission imposed by time-reversal sym-
metry (T) were studied by Halperin [5], Shelankov and
Pikus [6], and Canright and Rojo [7]. Here, we address
the underlying physics of the phenomenon.

There is a cardinal difference between nonreciprocal ef-
fects in ferromagnets (or paramagnets in magnetic fields)
and in antiferromagnets. In the former the nonrecipro-
cal effects the famous Faraday and Kerr rotations —are
macroscopic and can be calculated if the antisymmetric
part e' of the dielectric function of the medium is known
(see, e.g. , [8]). In contrast, in a typical Neel antiferromag-
net the time symmetry broken microscopically reemerges
in the large-scale macroscopic picture. The potential non-
reciprocal effects could be generated by the same antisym-
metric part of the dielectric tensor e;~. It is subject to the
well-known Onsager constraint:

e;7(co, ic, l) = e~, (to, —ic, —l), (1)
which expresses the time reversal symmetry of interac-
tions. Here k is the wave vector of the wave and l
is the staggered magnetization. In the majority of an-
tiferromagnets (some exceptions from this rule will be
discussed later) the two Neel sublattices are chemically
indistinguishable, and e;~ is an even function of l, signi-
fying that T is indeed macroscopically restored. With e;~
even in l, the only way to construct an antisymmetric ten-
sor is to make it odd in k, thus destroying not only time
parity but space parity (P) as well. The corresponding
rotation, so-called gyrotropic rotation, is of no concern to
us here. To reveal the hidden microscopically violated
time-parity we have to go beyond the conventional space
dispersion (the k dependence of the dielectric function of
an infinite homogenous sample) and take into account the
underlying atomic structure. Let us consider a typical ex-
periment: a slab of thickness L of a regular two-sublattice
Neel antiferromagnet and a 1inearly polarized wave of fre-

quency ~ which is incident normally. The details of the
geometry are shown in Fig. 1. The case of oblique in-
cidence is considered elsewhere. To avoid unnecessary
complications in formulas (it is easy to generalize the re-
sults), we assume that the medium response is given by
a coordinate dependent dielectric tensor e(r) and, more-
over, that e(r) is simply a sum of atomic polarizations p:

e(r) = g p„6(r —r, ),

where the summation runs over all atomic sites n. The
effects of atomic structure are small in the optical region,
being suppressed by the factor of the scattering theory
co a/c (a is of the order of atomic distances). To calculate
the zero and first order terms in coa/c we follow the
standard path of light scattering theory (see, e.g. , [8]). In
the zero order in co a/c the coordinate dependent dielectric
tensor (2) is substituted by its macroscopic value e. As
we have seen due to the Onsager relations (1), e is a
symmetric tensor. To better separate nonreciprocal effects
from birefringence, the propagation direction is taken to
coincide with the high-symmetry axis of our uniaxial
sample. Then only E'yy = 'Ezz = E' appear in the problem,
and the incident F', refIected Fo, and transmitted Fo zero-
order electric fields are all polarized in the same direction,
say, z. They are related by the well-known formulas (see,
e.g. , [8]).
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I IG. 1. Geometry of a typical optical experiment.
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The nonreciprocal rotation is generated (in first order in

cuba/c) by the antisymmetric part of the dielectric tensor
p'. Instead of p;~ we use its dual vector u~.'p, '~ =

(n)
e;~pup. If crystalline electric fields are neglected then u~

(n)
is oriented along the spin s, on the site n: ui, = Psq( —)"
for our two-sublattice antiferrornagnet, where s~ is the
magnetization direction of the first layer on the left in
Fig. 1 ~

Clearly, instead of (2) we may use the value of e'
averaged over the yz plane;

N —
].

e;~(x) = ya e;/~s~ g (—)"6(x —na), (3)
n. =0

where y = P/v (v is the volume of the unit cell)
represents the rotating power of a ferromagnetically
polarized layer.

The first order fields E satisfy the equations

e —curl curl E = — e (x)E3 (4)c2 ) c2

inside the slab with e (x) from (3), and E3 being the zero
order field inside the slab. Outside the slab (regions 1

and 2 in Fig. 1) E satisfies the corresponding homoge-
neous equation with e = 1. The equations were solved
using the Green function method. For y projections of re-
flected and transmitted fields which give the nonreciprocal
rotation we write

2 N —1

2ays, Pc n=o
( )"D—~~(x, na)E3(na)dy dz,

x&0 (5)

and the analogous formula for E' with D,~(x, na) for
x ) L. The Green functions in the geometry of Fig. 1

may be calculated as the line by line repetition of the
corresponding calculations in Ref. [9]. In evaluating the
sum in (5) we should keep only the leading order in
co a/c.

The polarization of the rejected wave is given by

!

E;, /E,". Expressing E3 in terms of E' = E," we find

2( )Ne + (1 + ~e)2e —2tcu~eL/c + QE' 1)2e2i~~eI/c.
c(e I) sin(~ ~e J /c) [(I + ~e)2e —in~el /c Qp 1)2eim~eL/c]

In the case of a thin slab, coL/c « 1, the answer
depends on the parity of the number of layers N.

For N odd:

yas ~1 1 CO—+ —i(e —1)
e —1 iL 2 c j

For N even:
Lr paces

l (7b)
E," c(e —1)

'

In the odd case the first term in the large parentheses
is dominant (coL/c « 1) and clearly represents the effect
of the first ferromagnetic layer. It is proportional to the
slab's total magnetization, and if absorption is absent then

y is imaginary and (7a) describes elliptically polarized
light the Kerr refiection from a ferromagnet [8]. For an
even number of layers in the absence of dissipation (7b)
gives a linearly polarized light. It might be stressed here
that (7b) describes a "bulk" effect, with both components
of the field proportional to the slab thickness L. In
contrast, in the odd case the y component does not depend
on L.

In the thick slab, ~L(1m'/c) && 1, the refiected wave
polarization is

@y /aM s& L~~ (8)
E; c(e —1)

'

The polarization of the transmitted wave is given by

F' 2
2

ma (~e I )el hfL~E/c + Q~ + 1)e Lcdr ~E/c.[I —(-) ]
C (~e + 1) e ' ~/' —(~e —1) e'" ~/'

(10a)

There is a Faraday type rotation which does not depend
crucially on the slab thickness. For cuL/c « 1:

E,' 4 c
=i —y s[1 —(—) ],

for cuL(Im~e/c) && 1:
Et

E,' 2 c ~e+ 1
y s [I —(—) ] (lob)

Inspection of the formulas (6)—(10) reveals their mi

croscopic nature: The polarization in transmission and
in reAection from this samples fluctuates wildly with the
number N of ferromagnetic layers, and the sign of rota-
tion is defined by the sign of the magnetization of the first
layer on the left. Obviously, it implies that the experimen-

coy2l
E," c(e —1)

CO

dxs (x)exp 2i ~ex
c

tal data will be extremely sensitive to the surface rough-
ness and to antiferromagnetic domains inside the sample.
Some of the physics contained in our model was also
mentioned in Ref. [10]. Results qualitatively similar to
ours, but using a different model, appeared in Ref. [11].

Next we considered another simple model: a spin-
density wave (SDW), s(x). The antisymmetric part of the
dielectric function in (4) is now e;~(x) = ye;Ji, s~(x), and
identical calculations give for the reflection polarization
of the thick slab
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D; = e).E~ + n;qHq,

B; = o.;~EJ + p, ;~H~,
(12)

where n;J is the so-called magnetoelectric tensor (see,
e.g. , [8]). Onsager's constraints for the tensor p, can
be written in exactly the same way as (1), while for the
magnetoelectric tensor we may write

n;, ( cko, l) = —n, ;(co, —k, —l). (13)

Applying P to the right hand side of (1) and (13) (l
changes sign under P), we find that all three tensors, e, p„,
and n, are symmetrical. The lack of any antisymmetric
part forbids the bulk optical rotation, and therefore there
is no rotation in transmission (see, e.g. , [9,12]). The con-
stitutive relations (12) give rise to nonreciprocal effects in

propagation and reflection (see, e.g. , [14]), and the calcu-
lations in the geometry of Fig. 1 for the wave propagating
along the threefold axis of Cr203 give the following value
for the rotation in reflection from the thick sample [14]:

Ey 2n
o. «1, (14)

E, e —1'
where n is the only relevant component of the tensor
n;~. The experimental values of n in all known mag-
netoelectrics do not exceed 10 [11]. The difference
between (8) and (13) is clearly visible. If T (and P) is
broken macroscopically, the rotation (13) remains finite at
low frequencies and is defined by the static value of o. .

The exponential in (11) ensures convergence of the
integral for a periodic s(x). Equation (11) permits us
to account for possible distortions of the SDW near the
sample surface.

The only experiment [4] on the nonreciprocal rotation
in antiferromagnets was performed on Cr203. The rota-
tion angle P was found to be of the order 10 —10, in

rough agreement with (6) which predicts the rotation of
the order coa/c, 10 —10 in the optical range. For de-
tailed comparisons one has to take into account a specific
property of Cr203. This oxide is the so-called magne-
toelectric; it may be electrically polarized by magnetic
fields and magnetized in electric fields. A great deal
is known about magnetoelectrics (see, e.g. , [8,9,12]. In
all of them, both time and space parity are violated on
the macroscopic scale, thus activating two new macro-
scopic mechanisms of nonreciprocal rotation. First, due
to P, T violation, the linear space dispersion is now per-
mitted by the Onsager relations (1). The corresponding
rotation was calculated by Hornreich and Shtrikman [13];
however, the result is virtually indistinguishable from (8),
because generally the strength of the bulk space disper-
sion is suppressed by the same factor toa/c. Obviously,
you cannot easily test the macroscopic T, P violation in
this way.

The second mechanism is truly macroscopic. In a
genuine magnetoelectric, the inductions D, B and fields
E, H are related by

The contribution (8) of microscopic nature goes to zero
with cu ~ 0. The combination of both can be written as

&y 2n(to) + i7 (to)ato/c
(15)

F.," e(co) —1

where y(to) may be treated as the new phenomenologi-
cal quantity, roughly representing the rotating power of a
single ferromagnetically polarized layer. The truly theo-
retical distinction between the two terms in the numerator
in (14) is in the microscopic factor a to/c. Unfortunately,
nature plays a trick and gives the majority of the known
magnetoelectric coefficients o. of the same order of mag-
nitude as aco/c in the optical region.

That is a challenge for experimentalists. They prefer
to work with magnetoelectric samples, because it is pos-
sible to get rid of antiferromagnetic domains using the
well developed thermal treatment in electric and magnetic
fields [11]. To separate the macroscopic and microscopic
contributions to rotation they have to abandon the clas-
sic Cr203, where the experimental data [4] can be ac-
counted for by =50% of the static value of n and to
turn to its more exotic brethren with weaker static rnag-
netoelectricity. (The known values of n are in the broad
range 10 6 —10 2.)

To summarize, we discuss how the hidden microscopic
time parity violation in classic Neel antiferromagnets is
revealed in optical experiments measuring nonreciprocal
rotation. The rotation angles found are small, -toa/c =
10 —10 in the optical region. The results are ex-
tremely sensitive to the sample surface roughness and to
the presence of antiferromagnetic domains.
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