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Origin of Pure Spin Superradiance
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The question addressed here is: What originates pure spin superradiance in a polarized spin system
placed inside a resonantor'? The term "pure" means that no initial coherence is imposed on spins, and
its appearance manifests a purely self-organized collective effect. An accurate solution of evolution
equations for a microscopic model is given. The results show that the resonator Nyquist noise does not
play any role in starting spin superradiance, but the emergence of the latter is initiated by local spin
fluctuations due to nonsecular dipole interactions.

PACS numbers: 76.20.+q, 76.60.Es

A polarized spin system prepared in a nonequilib-
rium state returns to equilibrium through the spin-spin
and spin-lattice relaxation mechanisms. The spin relaxa-
tion can be drastically accelerated if the nonequilibrium
magnetic system is placed inside a coil of a resonance
electric circuit with the natural frequency tuned to the
precession frequency of spin magnetic moments [1]. The
strong shortening of the relaxation time is caused by the
coherence between individual rotating spins, which devel-
ops as a result of the interaction between the rotating mag-
netization and the resonator feedback field. This coherent
phenomenon is analogous to the Dicke superradiance [2]
occurring in atomic and molecular systems, so Bloember-
gen and Pound [1] also called this fast collective damp-
ing in spin systems the radiation damping. Friedberg and
Hartmann [3] noted that, in fact, the whole process in

spin systems involves no radiation at all, but merely non-
radiative transfer of energy from the sample to the coil
and back. Nevertheless, the term superradiance has been
accepted for the transient coherent phenomenon in spin
systems, when it develops as a self-organized process,
similar to the Dicke superradiance. One more justifica-
tion for using the term spin superradiance is that this ef-
fect is always accompanied by coherent magnetodipole
radiation, though the corresponding radiation intensity is
very weak as compared to the easily measured current
power [4].

The term pure spin superradiance is used in order to
stress that this is a purely self-organized process, when
coherence develops from an absolutely incoherent state.
This is to be distinguished from triggered spin super-
radiance, during which collective effects also play an
important role, but the process starts from a coherent ini-
tial state, so that the imposed initial coherence triggers
the development of a correlated state, in the same way as
triggered optical superradiance [5] happens in atomic and
molecular systems. When spin superradiance is caused by
nuclear spins, it can be called the nuclear spin s~peI radi-
ance. A system of ion spins in a resonator cavity can, in
principle, be also a source of spin superradiance.

The nuclear spin superradiance has been recently ob-
served in a series of experiments [6—11] with differ-
ent substances: from Al nuclear spins in ruby (A1203)
and from proton spins in propanediol (C3Hs02), butanol
(C4H9OH), and ammonia (NH3). The interpretation of
the pure spin superradiance in these experiments is com-
monly based on the following picture. A system of polar-
ized spins is placed in a constant magnetic field directed
opposite to the sample polarization. The sample is put
inside the coil of a passive electric circuit whose natural
frequency is tuned to the Zeeman frequency of spins. The

fluctuating magnetic field formed by the thermal Nyquist
noise of the resonance circuit starts moving spins from
their position of unstable equilibrium. The motion of
spins induces an electric current in the circuit, which cre-
ates a stronger magnetic field acting back on spins. Under
the action of the feedback field, spins move faster increas-
ing even more the resonater feedback field, and so on.
This avalanche-type process results in a fast spin relaxa-
tion.

However, in this, generally correct, picture there is
one suspicious point, namely, that the beginning of the
process is originated by the thermal Nyquist noise of
the resonator. If one attentively reads the classical paper
by Bloembergen and Pound [1], then one finds there the
estimate for the thermal damping, due to the thermal noise
in resonator, showing that this damping is so negligibly
small for macroscopic systems that it can never produce
the initial thermal relaxation.

Thus we confront the alternative: either the common
belief that this is the resonator thermal noise which
initiates the pure spin superradiance is a delusion or
Bloembergen and Pound are wrong. To resolve this
paradox and to answer the question "what actually is the
origin of pure spin superradiance" is the aim of the present
paper.

The solution of the formulated problem meets the
following difficulty. As follows from the analysis of
Bloembergen and Pound [1], the homogeneous approach
provided by the Bloch equation is not sufficient for
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with dipole spin interactions

H;z = (p, /r, z) S; S~
—3 S; n;J SJ n~j, (2)

where p, is a nuclear magneton and

nij EIJ f/' fiJ I
$ I J fiJ I gJ

The total magnetic field

a=H, e, +He.

consists of a constant external field Ho and an alternating
field H of a resonator coil. The latter has n turns of
a cross-section area 8, over a length /. The resonance
electric circuit includes a resistance R, inductance I, and
capacity C. The alternating resonator field

H = (4nn/cl)j (4)

is formed by an electric current satisfying the Kirchhoff
equation

L + RJ'+dJ 1

dt C
d4

j(7)dr = — + Ey,dt

in which Ey is an electromotive force and

correctly describing the process, but inhomogeneous local
fields that produce a microscopic relaxation mechanism
are essential. The phenomenological Bloch equation,
even being solved in a reasonably accurate approximation
[12), can describe only the triggered spin superradiance,
when an initial coherence is imposed by assuming nonzero
initial conditions for transverse magnetization. To take
into account inhomogeneous local fields providing a
microscopic relaxation mechanism means the necessity of
dealing with a microscopic model. Writing the equations
of motion for spin components we get a 3N-dimensional
system of nonlinear differential equations for N spins,
plus the Kirchhoff equation for an electric circuit. If one
invokes any approach to solve this system of equations
based on the uniform mean-field approximation, then one
immediately returns to a homogeneous picture equivalent
to the Bloch equation, thus losing information on local
fields. When the number of spins N is not too large, say,
N —10—10, then it is possible to resort to numerical
calculations [4,13]. However, such computer simulations
are able to give only a qualitative description, since the
number of spins involved is incomparably smaller than
what one has in real samples with N —10 . Below, an
analytical solution of microscopic equations is presented.

A system of nuclear spins is described [14] by the
Hamil tonian

N N

H = —gH~ —p, PB S;
iwj i=1

nA, gp —P (S;)c N,
is a magnetic fiux through the coil, g = V/V, being a
filling factor, V, —= lA, the coil volume, and p = N/V
the density of spins.

Define the resonator natural frequency ~ —= 1/QLC,
ringing width y3 —= R/2L, and dimensionless fields

h = p, H/hy3,

Introduce the parameter

f = cp Eg/nA, 6 y3

clo = 77+pp, /hy3

characterizing the strength of coupling between the spin
system and the resonator. Let us also use the notation

N
1

N

u —= —P (S;), ~ —= —P (S,') (8)
l=1 i=1

for the mean spin components, where ( ) implies statis-
tical averaging. Then the Kirchhoff equation (5) takes the
form

dh + 2+3h + co
dt

h(r) dr = —2un(u* + u) + y3f .

caused by the dipole interactions

a) —— , (1 —3cos 6;,),p
rij

3p
b;, = —

3 sin 6„exp(—i2q;, ),
4r;J
3p

cfj 3 sin (26&'j) exp( —i p$J )
4r;J

where 6;j and P;j are the sPherical angles of n; J . Note
that in a uniform approximation the local fluctuating fields
(10) are zero because of the properties of the dipole

To derive the evolution equation for the variables (8),
we proceed as follows. Write the Heisenberg equations
for the corresponding spin components with the standard
notation coo —= p, Ho/6 for the Zeeman frequency. De-
couple the double spin correlators in the manner described
by ter Haar [15], in order to preserve the terms containing
the homogeneous spin-spin relaxation y2 =—T2, which

—1

can be done by using second-order perturbation theory.
For generality, we may also include the term describ-
ing the spin-lattice relaxation y1 =—T1 . These steps are

—1

known and clear. The most difficult problem is how to
treat the local spin fields

N

b; = —g (~ a;rS,' + r;, E + r, E, ), .
"

j(wi)

g (b;, 5++ r. ;P')', (10)
J(wr)
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f(~vp Pp + 1 y2)u 1(r3h + P)s

2
= —(y3h + p)u" ——(y3h + q *)u —y1(s —g),2dt

dfu/~

dt
= —2yq~u~ —i(y3h + p)su" + i(y3h + p")su.

The structure of (13) is transparent: y3h + p is the total
effective field acting on spins; h is the resonator field
defined by (9); pp and p model random local fields witll
a distribution whose particular form is not important since
all we need is the property (12). If pp and p were absent,
then (13) would be reduced to the Bloch equation.

To consider the case of pure spin superradiance, the
initial conditions for the system of Eqs. (9) and (13) are
to be taken as

interactions (11). To get a closed set of equations, at
the same time retaining the information on the presence
of fiuctuating fields (10), we may replace the latter by
stochastic fields, 6; ~ ego, p; ~ cp, the first of which, in
compliance with (10), is real and the second is complex.
The distribution of these random fields is such that the
averaging over it, which we shall denote by ((. )), gives

((~p)) = ((q)) = 0, ((pp)) = —,'((lpl')) = y.', (12)

where the dispersion y„ in accordance with (10), is of the
order of y2. In this way, for the spin components (8) we
obtain the system of stochastic equations

stochastic fields. This procedure results in the equations

dz =—= gy2w —ri(~ —C) —rfz ~

dt
dw = —2y2~ —2gy2~2 + 2yyz (17)

for the slow variables, where

y 1 ~(r2 —y3)'w=v — 2Z, g=—np
y2& (y2 —y3)' + ~'

and the attenuation

f0 y3 1+ ~y, —2vra
s~'i3)'

+ 2 [(n —27rp) (5 —y3)6'+ y,'
+ 2r, h(p + 2~n)], (18)

in which

~(y2 —y3)'
cup (y2 —y3)2 + A3'

~(r2 —r3)~
p =— np

~O 72 73 + ~
is due to the action of the driving field (1S).

The amplitude of the electromotive force related to the
thermal Nyquist noise [19], at temperature T satisying
the inequality h~ && k13T, is given by Eo = y3RksT/7t
Hence for the amplitude of the driving field (IS) we have

h(0) = 0, u(0) = 0, s(0) = gp. (14) fo = 8no4T/7thy3N. (19)

f = fo cos~t, fp —= cp, EO/nA, hy3.(1S)

The system of equations (9) and (13) can be solved
by a method [16] combining the guiding-center approach
[17] and the method of averaging [18]. The idea is
straightforward: First, we classify the variables as fast
or slow. To this end, we take into account the usual
inequalities y~ && coo, y2 && coo, y3 && cu, and consider
the quasiresonance case, when ~A~ && cup, where 6 =
co —coo is detuning. Then, we notice nght away that the
variables h and u can be treated as fast, and s and ~u~ as
slow. Keeping the latter as fixed parameters

s = g, Juf = v, (16)

we get for the fast variables a system of linear equations,
which, therefore, is not too difficult to solve. The found
solutions for fast variables are to be substituted into the
equations for slow variables, and the right-hand sides of
these equations are to be averaged over the period 27'/cup
of fast oscillations and also over the distribution of

The electromotive force Ef = Ep cosset in (S) corre-
sponds to the resonance mode of the thermal Nyquist
noise. The driving force in (6) is

(20)

According to (14), the initial conditions are g(0) = go and
v(0) = 0. Equations (20) are exactly integrable yielding

2 h2 (21)

Let us accept the values of parameters char-
acteristic of experiments [7—11] with proton
spins coo —co —10 sec ', y ~

—10 sec
y2 —10 sec ', y3 —10 sec ', T —0.1 K, and
N —10 . Then fo —10 ' and the thermal attenuation
(18) is yf —10 '" sec '. Such an insignificant quantity,
of course, plays no role, as compared to all other damping
parameters, and has to be neglected in (17).

This result shows, in agreement with Bloembergen and
Pound [1], that the Nyquist noise of the resonator can
never produce the initial thermal relaxation, and thus
cannot originate the pure spin superradiance.

Omitting in (17) the negligibly small yf and taking into
account that y~ && y2, we come to

dz = dw—= gypw, = —2y2w(1 + gz) .
dt '

dt

3002



VOLUME 75, NUMBER 16 PHYSICAL REVIEW LETTERS 16 OcToBER 1995

here yp is the radiation width given by

y(i = I p
—2(gyz)'e*zo, (22)

where

I o —= y2(1 + gzp), e. —= (y*/top),

the radiation time 7.p = yp, and the delay time is

0 & tp & Gc, Wp & T2. (24)

Invoking (22) and (23) and bearing in mind that e. « 1,
we find that (24) is equivalent to

tp = ln (23)yp+ rp
The criterion for the occurrence of spin superradiance

is the validity of the inequalities

resonance [14], are called nonsecular interactions, as
compared to the secular interaction a;~. The initial motion
of spins, when u(0) = 0 and h(0) = 0, is due solely to the
action of nonsecular interactions. This conclusion is in
agreement with computer simulations [4,20] for small and
mesoscopic spin systems with N —10—103. Thus, we
are in a position to give the final answer to the question
posed in this paper: The pure spin superradiance in a
nonequilibrium system of polarized nuclear spins can be
originated only by local fields due to nonsecular dipole
interactions. The thermal Nyquist noise of resonator plays
no role in this process.

I would like to express my sincere gratitude to
R. Friedberg, S.R. Hartmann, and J.T. Manassah for
useful discussions and helpful advice, as well as for
their kind hospitality during my visits to the Columbia
University and City University of New York.

zp & zz ———2/g, e ) 0. (25)

As long as lzpl & 2, the first of the inequalities (25)
requires that g ~ 4. In this way, the pure spin super-
radiance occurs when the initial spin polarization zp is
negative, with an absolute value surpassing the threshold
lz„l = 2/g, when the coupling of the spin system with a
resonator is sufficiently strong, g ~ 4, and if there exist
local random fields with a nonzero dispersion y, ) 0.

To emphasize the crucial importance of the local fields,
let us notice that if one puts e~ ~ 0, then yp ~ lI pl
and ltpl ~. That is, without these fields the pure
spin superradiance is impossible. To make the essential
dependence of the delay time on e, apparent, we may
write (23) for the case of strong coupling, when glzpl »
1, then

tp
T2

ln
2g lzol

2zp

From here it is evident that tp ~ ~ as e, ~ 0. For
the parameters typical of experiments [7—11], we have
tp —10 —10 sec. So, these are the local random
fields that are responsible for starting the process of self-
organization leading to the pure spin superradiance.

One more question is worth answering: Which part
of the local fields is more important for initiating the
pure spin superradiance? Recall that the stochastic fields
entering into the evolution equations (13) are related to
two types of local fields defined in (10). As follows from
(13), the term 6; in (10), corresponding to pp, only shifts
the rotation frequency, while the term cp;, corresponding
to p, starts moving the spin z component even when the
resonator feedback field h is yet absent. The term p; in
(10) is due to the dipole interactions b;, and c;y defined
in (11). These interactions, in the theory of magnetic
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