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Kondo Effect in a Luttinger Liquid: Exact Results from Conformal Field Theory
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We report on exact results for the low-temperature thermodynamics of a spin-2 magnetic impurity
coupled to a one-dimensional interacting electron system. By using boundary conformal field theory,
we show that there are only two types of critical behaviors consistent with the symmetries of the
problem: either a local Fermi liquid or a theory with an anomalous response identical to that recently
proposed by Furusaki and Nagaosa. Suppression of backscattering off the impurity leads to the same
critical properties as for the two-channel Kondo effect.
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Electron correlations often play an important role in con-
densed matter of reduced dimensionality. A key issue,
raised by experiments on mesoscopic quantum dots and
wires [1], is how to describe the interplay between impu-
rity and correlation effects. For electrons in one dimension
(1D), it has long been known that any finite concentration
of impurities leads to Anderson localization [2], but, as
shown recently, even a single potential scatterer may dra-
matically influence the physics in the presence of repulsive
e-e interactions: at T = 0 the scatterer acts as a perfectly
reflecting barrier [3].

The case of a dynamical scatterer, like a magnetic
impurity, is less well understood. The 3D analog, with
noninteracting quasiparticles representing the electrons
(Fermi liquid), is that of the Kondo problem [4]. By
symmetry, it can be modeled by a 1D gas of free chiral
particles coupled to a magnetic impurity, allowing for an
exact solution [5]. In contrast, the case of fully interacting
1D electrons in the presence of a magnetic impurity
largely remains to be explored. Laboratory studies of
artificial potential defects ("antidots") in quantum wires
have recently been reported [6], and the experimental
study of an interacting electron system coupled to a
spinful defect may soon be within reach. (A possible
realization is a quantum dot containing two spin levels
and coupled to two narrow leads [7].) This poses a
challenge to the theorist. In 1D the e-e interaction
removes the single-particle spectrum, and the electrons
effectively get replaced by new collective excitations,
separately carrying spin and charge (Luttinger liquid)
[8]. A magnetic impurity, on the other hand, couples
to individual electrons, and it is a priori not clear how

to incorporate its description in that of the spin-charge
separated modes.

The problem was recently considered by Furusaki and
Nagaosa [9], expanding on earlier work by Lee and Toner
[10]. These authors studied a Tomonaga-Luttinger model
[11],with the electrons coupled to a local magnetic mo-
ment via a Kondo exchange. Using "poor man's scaling, "
an infinite-coupling fixed point was identified, suggesting
a completely screened impurity at low temperatures. The
impurity specific heat, as well as the conductance, was
argued to exhibit an anomalous temperature dependence,
with a leading term T '~ p ', K~ being the Luttinger
liquid "charge parameter" [8]. However, the validity of
the result remains unclear, as it relies upon a perturbative
expansion in a strong coupling region where perturbation
theory in fact loses its meaning.

In this Letter we study the problem using boundary con-
formal field theory (BCFT) [12]. The heart of the method,
pioneered by Aflleck and Ludwig [13,14], is to replace
the impurity by a scale invariant boundary condition.
Combined with the machinery of BCFT this approach
has proven very powerful, and has opened up an en-
tirely new vista on quantum impurity problems. As with

any application of conformal theory, the method gives a
classification of possible critical behaviors. Being exact,
this information is extremely valuable as it places strong
constraints on any constructive theory of an impurity
problem. In the present case several new features appear,
making the identification of boundary condition less obvi-
ous. Still, by exploiting symmetry arguments we arrive at
an exact result showing that the problem must renormal-
ize to one of only two possible fixed-point theories.

We describe the electrons by a Tomonaga-Luttinger
Hamiltonian with repulsive interaction (g ) 0) [11]:

1

277
. iieet. ~(x)t t/tt, ~(x) ~ ~ Qtt (y(x)t PR,~(x):t

dx dX

+ —:i/k, (x)i/k, (x):: t/tt, (x)t/tt, (x): + g—: PJt, (x—)i/tL, (x)Pt. ,
— (x)&R,— (x):, (1)

300 0031-9007/95/75(2)/300(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 2 PHYSICAL REVIEW LETTERS 10 JUr v 1995

and coupled to a spin-2 impurity by

A,I; I
= AII . Pu (0)Zcr „Pi~(0): . S. (2)

Here pL/R (x) are the left or right moving components of
the electron field 9' (x), expanded about the Fermi points
~kF, and we implicitly sum over repeated indices for spin
rr, p, =f, f and handedness k, l = L, R. Normal ordering
::is carried out with respect to (w. r.t.) the filled Dirac sea.
The couplings AF ——AzL,

=—Agg and Ap =—Azg =—AgL
are the amplitudes for forward and backward electron
scattering off the impurity 5, respectively. For the
physically relevant case AF = XII (Kondo interaction),
MzL + A, I; ~ contains the long-wavelength physics of
a small-U Hubbard chain off half filling, and coupled to
a single spin-z impurity. Then g = Ua/2~ and vF =
2at sinakF, with U and t the usual Hubbard parameters
and a the lattice spacing.

The bulk Hamiltonian MTL can be written on diagonal
Sugawara form [15],using the charge and spin currents

JL/R (x) cosh0 l//L/R n. (x) t/IL/R, o (x) ~

+ sinhO: pR/L ~(x)QR/L ~(x):, (3a)

JL/R(x) =:QL/R ~(x) 2o~pQL/R „(x):, (3b)t

with tanh20 = g/(vF + g). Dropping a marginally irrel-
evant term (g/7r) JL—. JR, one obtains the critical bulk
Hamiltonian

dx ':jI(x)jt(x): + ':Ji(x) Ji(x):8~ 6~
(4)

The spin and charge separation in (4) yields two dy-
namically independent theories, each Lorentz invariant
with a characteristic velocity, v, = vF(1 + 2g/vF)'/
and v, = vF —g. The currents ji(x) and JI(x) satisfy
the (level-2) U(1) and (level-1) SU(2)i Kac-Moody alge-
bras, respectively, i.e., MTL is invariant under the chiral
symmetry U(1)L X U(1)R X SU(2)i L X SU(2)i R.

To cast the problem on a form where BCFT applies, we
use a representation where the impurity location x = 0
defines a boundary. For this purpose we confine the
system to the finite interval x H [—Z, Z], fold it in half
to [0, 8], identify the two points x = ~Z, and introduce

~ j 2new cuITents f«x ) 0: jL/R(x) —= jL/R(x) jL/R(x)
jR/L( —x), and analogously for Jt(x). We thus arrive at
a representation with doubled degrees of freedom on half
the interval. In 2D Euclidean space-time Iz = vr + ix),
with v = v, (v, ) for charge (spin), we interpret the time
axis as a boundary where

JL/R( 0) JR/L(r, O), JL/R(r, O) = JR/L(r, 0). (5)

By analytic continuation, this is equivalent to a chiral
(left-handed) theory on [—Z, 4]. The Hamiltonian then
takes the form (4), but with the sum over handedness
replaced by a sum over channels 1 and 2 of left-handed
currents only.

It is instructive to first study the case of only forward
scattering off the impurity, i.e. , ALR = ARL = 0 in (2):

1 1
~ising = 0(&)~ (~)~ (&) + NIsing ~'16 '2 (10)

where N~, Ni»„g E N. The complete set of confor-
mal towers is accordingly labeled by (Q, AQ, j, P) and
the spectrum of scaling dimensions is b, = 5, + As +

The selection rule for combining quantum num-
bers can be extracted from comparison with Bethe ansatg
results for the Hubbard model [17] (of which A~L is the
long-wavelength effective theory), and one finds ( j, p) =
(0, Il) or (1, e) for Q, 2 (Q + AQ) even; (0, e) or (1, ll) for

Q even and 2(Q + AQ) odd; and (2, o.) for Q odd.
When AF 4 0 we absorb 3f~ into 9f~L by redefining

the spin current as that of electrons and impurity. Ef-
fectively, this adds an extra spin-2 degree of freedom to
the SU(2)2 towers, which, as a result, get shifted accord-

1
ing to the conformal field theory fusion rules: j = 0 ~ 2,
1 1

2
~ 0 or 1, 1 2. The selection rule describing the new

content of possible boundary scaling operators is obtained
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AP = AF[JL(0) + JL(0)] S.
As the two currents are coupled via S, A~ breaks the
SU(2)i X SU(2)i symmetry of AzL down to the di-
agonal level-2 subalgebra SU(2)2 spanned by J(x) =
JL(x) + JL(x). To adopt to this fact we use the Goddard-
Kent-Olive construction [16] to write the spin part of the
Hamiltonian as a sum of an SU(2)2 Sugawara Hamilton-
ian and an Ising model. We can then absorb AF into
A~L by the canonical transformation J(x) J'(x) —=

J(x) + SB(x), J'(x) being the spin current of electrons
and impurity. The impurity thus disappears from the
Hamiltonian, and as a consequence (5) gets "renormal-
ized. " This new, renormalized boundary condition is most
easily defined by the selection rule that prescribes how
the U(1) X U(l), SU(2)2, and Ising degrees of freedom
recombine at the boundary after the shift J(x) ~ J'(x).

Consider first the unperturbed problem with AF =
0. The charge eigenstates organize into a product of
two U(1) conformal towers, one for each channel, and
labeled by two integer quantum numbers (Q, AQ), the
sum and difference of net charge in the two channels
(w.r.t. the ground state). These eigenstates are in 1-1
correspondence to the scaling operators in the charge
sector, of dimensions

2 2A, =-(q, +q)+N, ,

with e', e'
q =Q

2
-(-I)'~Q

2

and N, E N. Similarly, the eigenstates in the SU(2)q and
Ising sectors appear in conformal towers labeled by the

spin quantum numbers j = 0, 2, 1, and the Ising primary
fields @ = Il, o. , e, respectively:

1
/is = j(j+ 1)+Ns

4
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by applying fusion twice to the previous selection rule
[14]. This gives for forward scattering: ( j, @) = (0 or 1,
or e) for Q even; (z, o.) for Q odd.

1

The low-temperature thermodynamics is now governed
by the leading correction-to-scaling boundary operator
(LCBO) As. this must preserve all symmetries of A~L +
A~, the forward scattering selection rule together with
invariance under chiral U(1), SU(2)z, and channel ex-
change (1 ~ 2), imply a unique LCBO given by the first
descendant in the j = 1 tower: J & p. This is the
same LCBO that drives critical scaling in the two-channel
Kondo effect for noninteracting electrons [14]. Specifi-
cally, the impurity contributions to the specific heat 6C
and spin susceptibility 6y are given to leading order by

6C=
3

Tlnp F9' 1
(1 la)

V 7 OT

pF18 1

as T ~ 0. Here p, F is the scaling field conjugate to
J ~ @ and ro a short-time cutoff. With the known
bulk response for the Tomonaga-Luttinger model, C =
7r(v, ' + v, ')T/3 and g = 1/2~v, [18], we predict a
Wilson ratio

(1 lb)

(12)

For g ~ 0 (v„v, ~ vF), this reduces to the universal
number 8/3 characterizing the usual two-channel Kondo
effect [14].

Let us now include backward scattering off the impu-
rity, A~ = AI.R —= ARL 4 0. The corresponding terms in

(2) break the chiral SU(2) and chiral U(1) invariance
of STEAL As a con. sequence AQ is no longer restricted
to zero, and the charge sector makes nontrivial contribu-
tions to the content of scaling operators. The lowest di-
mension operator with AQ 4 0 allowed by the forward
scattering selection rule is obtained from (Q, 6Q, j, p) =
(0, ~2, 0, Il), and has dimension 5 = 2e z~ ( z. Back
scattering is thus a relevant perturbation and drives the
system to a new fixed point. When the flows of AF and
A~ converge, this is the fixed point for Rondo scattering
in a Luttinger liquid.

To study this case we consider the bare Kondo inter-
action

: QI (0)zcr pg(~(0): S, (13)
k, l=L,R

obtained from (2) by choosing Aq~ = A, i.e. , AF = A~ =
A. With no e-e interaction [g = 0 in (1)] we have a
free bulk Hamiltonian Aq together with Ax. . Passing
to a basis spanned by definite-parity fields P~ (x) =

(x) ~ Pz (—x)]/~2, Ap + 9f~ transforms into
a two-channel theory, but with the impurity coupled to the
electrons in only one of the channels. This renormalizes
to a local Fermi liquid (like the ordinary 3D Kondo
problem), with response functions scaling analytically
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with temperature [19]. However, a different approach
must be used for the interacting problem since A~L is
nonlocal in this basis. Here we exploit the expectation
that any local impurity interaction, including the Kondo
interaction 9f~, can be substituted by a renormalized
boundary condition on the critical bulk theory [20].
The equivalent selection rule defines a fixed point, and

by demanding that any associated LCBO must respect
the symmetries of the problem and correctly reproduce
the noninteracting limit as g ~ 0, the possible critical
theories can be deduced. (Note that a selection rule
here defines a boundary fixed point, and is valid for all
values of the marginal bulk coupling g. Hence, given
a selection rule, Fermi-liquid scaling must emerge in the
limit g ~ 0.)

To have a generally applicable formalism we introduce
a notation that does not make an implicit relation between
the two diagonalized charge towers (as Q and AQ do),
and denote a combination of conformal towers by (C~, D~,
Cz, Dz, j; @). Hence (C, , D;) replace Q and AQ, such
that the scaling dimensions in the charge sector are now
given by (7), with

e' e '
q = C ——(—1)'D

L L l (14)

replacing (8). The corresponding states are seen to be
global U(l) invariant if q —= qt + q2 = 0, and chiral
U(1) invariant if q = Aq —= qt —

qz = 0. This is con-
sistent with our previous notion of global and chiral U(1)
invariance in terms of Q and 5Q, as the former selection
rules implied the relation Ci = C2 and Di = D2. The
crucial point to realize is that Q and AQ are not suffi-
cient to label all combinations of U(1) conformal towers,
whereas q and Aq are well defined for any selection rule.
Hence, at the new fixed point, the signature of breaking
chiral U(1) invariance is to allow operators with Aq 4 0.
Global U(1) invariance, on the other hand, respected by
Ax, requires q = 0. Together with invariance under
channel exchange (1 ~ 2), this leaves only two possi-
bilities for the charge part of the LCBO [21]: (i) C~ =

—2OC2 = 0, D~ = D2 = even integer ~ 5, = 2p e +
N„and (ii) C~ = —Cz = even integer, Dt = Dz = 0 m
5, = zp e + N„with p, N, E N.

The complete scaling dimensions are obtained by
coupling the SU(2)z and Ising conformal towers to the
pairs of U(1) towers in (i) and (ii). Starting with the

1
SU(2)z sector, the j =

z tower is expelled by global
SU(2) invariance. Turning to the j = 1 tower, the
primary operator @ is excluded by the same reason. The
lowest-dimension SU(2)2 singlet operator from this tower
is J ~ +. However, this is the same operator that
drives critical scaling in the forward scattering problem.
It produces a diverging impurity susceptibility as T ~ 0,
in convict with the known Fermi liquid scaling in the

g ~ 0 limit. The j = 1 tower is therefore expelled, and
the only contribution from the SU(2)2 sector is the identity
and its descendants. Next we note that no relevant scaling
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1 2g 1 1 2 2g 1 1
~LcBQ I ze + z zP e + (16)

and with p as above.
Each entry in (15) and (16) defines an effective scaling

Hamiltonian A„,t;„s = A~L + p, 6(0), with 6(0) the
corresponding LCBO conjugate to the scaling field p, .
Using A„,~;„s, the finite-size corrections at the fixed
point can be calculated perturbatively in p„and by
treating temperature as an inverse length the corrections
to the bulk thermodynamics due to the impurity are
accessible via finite-size scaling. Given (15) and (16), and
requiring Fermi-liquid scaling for the impurity specific
heat 6C and susceptibility 6g as g ~ 0, we find that
there are only two possible types of critical behavior.
When AL( BQ 1 or ALcBQ ) z Fermi-liquid scaling
persists for g 4 0, whereas a non-Fermi-liquid behavior

1
emerges when ALcBQ = z(e + 1):

BC = ct(1/Kp —1) T' ' ' + cz T,
6g = c3 T

(17a)

(17b)

as T ~ 0. Here Kp = (1 + 2g/vF) '~ and ct z3 are
amplitudes depending on the scaling fields and velocities.
The LCBO driving the anomalous scaling in (17) is given
by the composite operator QLcBQ = [Vzp && V 2p +
V z p X Vz p] X e where Vc ii is a U(1) primary (vertex)
operator in channel i, and e the Ising energy density.
This scaling (17) agrees exactly with that proposed by
Furusaki and Nagaosa [9], in support of a non-Fermi-
liquid scenario. However, a simplified model (neglecting
backward spin diagonal and forward spin off-diagonal
Kondo scattering) suggests that in fact the other scenario
(Fermi liquid) may be realized [22]. Note that in none of
the two cases does the e-e interaction infIuence 6y: the
impurity remains completely screened for g 4 0.

operators are allowed, since at g = 0 the fixed point is
known to be stable, being that of the ordinary Kondo
problem. As g is the only tunable parameter in A~L
(with a renormalized boundary condition replacing Hfc),
this is true also for g 4 0 since otherwise the theory
would become noncritical. Hence, starting with (i) and

p = 0, only ll from the Ising sector is permissible, as
any other choice would produce a relevant operator. For
p = 1, all choices lead to relevant operators, whereas for
p ~ 2 the converse is true. Summarizing, the possible
couplings of SU(2)2 and Ising towers to the U(l) towers
selected by (i) yield the following candidate LCBO
dimensions:

1 2 2g 1 1

~LcBQ I zP e + (0. t6 z)

with p E N + 2. Here b.LcBQ = 1 is the dimension
.1,2of the first U(1) Kac-Moody descendants jt', allowed

by the broken particle-hole symmetry of the underlying
lattice model. Turning to (ii), and employing the same
reasoning as above, one finds a second class of possible
LCBO dimensions:

In summary, we have shown that the symmetries of the
problem restrict the possible critical theories to either a
local Fermi liquid (as for free 3D electrons) or a non-
Fermi-liquid with thermodynamic response as in (17).
The BCFT approach as presented here is quite general
and can be used to derive the finite-size energy spectrum
at the non-Fermi-liquid fixed point, as well as transport
properties. Details will be published elsewhere [21].
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