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Array Enhanced Stochastic Resonance and Spatiotemporal Synchronization
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We enhance the response of a "stochastic resonator" by coupling it into a chain of identical resonators.
Specifically, we show via numerical simulation that local linear coupling of overdamped nonlinear
oscillators significantly enhances the signal-to-noise ratio of the response of a single oscillator to a
time-periodic signal and noise. We relate this array enhanced stochastic resonance to the global
spatiotemporal dynamics of the array and show how noise, coupling, and bistable potential cooperate to
organize spatial order, temporal periodicity, and peak signal-to-noise ratio.

PACS numbers: 05.40.+j, 02.50.—r, 87.10.+e

A noisy nonlinear system exhibits stochastic resonance
(SR) if its response to a deterministic signal is optimized
by a nonzero value of the noise [1,2]. Over the past
decade this phenomenon has generated considerable in-
terest [3], and recent results indicating the possibility of
an enhancement of the effect in globally coupled arrays
with linear [4] or nonlinear [5,6] couplings have fueled
speculation regarding its utility in signal processing and
device applications. Recent theoretical results [7] afford
a glimpse into the richness of behavior that is possible in
large arrays of noisy coupled oscillators. In this Letter,
we show that local, linear coupling can enhance SR in
a chain of nonlinear oscillators. We understand this en-
hancement in terms of the collective spatial and temporal
motion of the array.

The phenomenon of SR has universal Aavor, having
been demonstrated in a wide range of systems [3]. For
isolated nonlinear elements, conventional SR enables the
use of noise as a design parameter. For arrays of
nonlinear elements, array enhanced SR (AESR) suggests
an additional design parameter: the coupling strength. We
believe AESR, along with its attendant synchronization
phenomena, is a novel use of noise which may be
significant in biological systems and which may be
important for engineers, especially in situations where the

possibilities of linear systems have been exhausted, or
where operating conditions are extreme.

In order to demonstrate noise-induced synchronization
and AESR most generally, we consider as simple a model
system as possible. We study a one-dimensional array (or
chain) of damped driven nonlinear oscillators

mx + yx = kx —k'x + A sincot. (1)
We choose k, k' ) 0 to ensure a bistable potential. To
reduce the dimension of the parameter space, we study the
overdamped limit mx « yx and neglect the inertial term
with respect to the viscous term. (However, AESR occurs
even if the inertial term is retained [8].) We couple these
bistable elements linearly to their nearest neighbors and
employ free boundary conditions. A typical overdamped
oscillator n evolves according to

x„= kx„—k'x„+ A sinrot + e(x„ t
—x„)

+ e(x„+i —x„) + N„(t).
We imagine N„(t) to be Gaussian white noise. However,
in practice, N„(t) is band limited with a (one-sided)
spectrum of height 2D out to a very high frequency
f& and zero beyond. We characterize the noise by its
mean squared amplitude or noise power tTz = 2Dftv We.
emphasize the case of incoherent or local noise, where
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the noise is uncorrelated from site to site, as opposed to
the case of coherent or global noise, where the noise is
identical at each site.

We numerically integrate the stochastic differential
equation (2) using the Euler-Maruyama scheme [9] with
a time step dt = 1/(2f~). We use the time series of a
single oscillator in the array to compute a power spectral
density (PSD). We typically average four PSD segments,
each of 32 forcing periods per segment, and 4096 samples
(time steps) per forcing period. This centers the forcing
frequency on bin 32 of the PSD, which we call the signal
bin. To reduce bin leakage we first convolve the signal
with a Welch window.

We characterize SR by a single-to-noise ratio, defined
here as the ratio of the signal power divided by the noise
power in the signal bin, expressed in dB. The noise
power is estimated by performing a nonlinear fit by the
PSD around, but not including, the signal bin. The signal
power is estimated by subtracting this noise background
from the total power in the signal bin, taking into account
that Welch windowing a long time series scales narrow-
band peaks by a "processing gain" of about 0.83 [2].
Thus,

(total power —noise power)/gain
SNR = lolog10

noise power

Variations of this definition do not qualitatively alter our
results.

Since we are often interested in binary signals and
quantized-output systems (e.g. , neurons and some charged
couple device arrays), we filter the unquantized analog
time series to generate a binary output of ~1, refIecting
which well the oscillator is in. To remove insignificant
excursions across the potential barrier, we give the filter a
small hysteresis; however, this does not qualitatively alter
our results. Furthermore, we emphasize that both the M
peak and its enhancement in coupled arrays are clearly
evident even in the unfiltered (i e , anal. og. ) SAR curves.

We choose our operating regime just below the de-
terministic switching threshold so that in the absence of
noise the oscillator is confined to a single well of the
bistable potential, but small noise can induce significant
hopping between wells. However, we observe similar
phenomena even at substantially lower forcing amplitudes
[10]. The operating parameters k = 2.1078, k' = 1.4706,
A = 1.3039, and f = cu/2~ = 0.116 (used throughout
this work) are not otherwise special.

Figure 1 illustrates how the SNR curve changes as a
single resonator is coupled more and more tightly into
the middle of an array of identical resonators. As the
noise increases, the SNR peak rises, shifts to higher
noises, and then subsides. With increasing coupling
strength it becomes increasingly difficult for the noise
to kick an oscillator, along with its coupled neighbors,
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over the barrier. Thus the binary SNR curve shifts
to higher noises. The SR peak in the analog curve
rises as the coupling strength increases from zero to
two. Heuristically, coupling favors coherent motion over
incoherent motion.

Figure 2 illustrates how the SNR, maximized over
noise, varies with coupling strength and chain length. In
the limit of low coupling, the oscillators are independent
and behave as if isolated. In the limit of high coupling,
the oscillators are rigidly connected and behave as a
single oscillator. In between, the coupling enhances the
coherence of the oscillators. Even for a chain of length 9,
the SNR enhancement is 6 dB.
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FIG. 2. SNR of middle oscillator, maximized over (local)
noise, plotted as a function of coupling for various chain
lengths. Numerical uncertainty is ~0.5 dB. Cubic splines have
been fit to the data to aid the eye. Other parameter values as
in Fig. 1.
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FIG. 1. SNR output of the middle of nine oscillators. Curves
rise, shift, and subside as coupling increases. Numerical
uncertainty, arising from averaging PSD's of noisy time series,
is ~0.5 dB. Cubic splines have been fit to the data to
aid the eye. Inset: Unfiltered analog curves rise as coupling
increases from e = 0 (lower curve) to e = 2 (upper curve).
Parameter values are k = 2.1078, k' = 1.4706, A = 1.3039,
and f = cu/27r = 0.1162.
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At low to moderate coupling, the SNR of the middle os-
cillator exceeds the SNR of the end oscillators. However,
at large coupling the SNR's of the middle and end oscilla-
tors are indistinguishable to within numerical uncertainty.
Large coupling homogenizes the response of the chain.

We can relate the global dynamics of the array to the
local behavior of component oscillators. The sequence in
Fig. 3 reveals the spatiotemporal behavior of the chains
at successively higher noises. Each sequence displays the
evolution of a chain of 101 oscillators, time increasing
upward. Black corresponds to one well and white to
the other. The oscillators in the chain all begin in the
black well, but with a random distribution of positions.
(In Fig. 3, a short transient has been deleted. ) As
the chains evolve, distinct collective behaviors become
apparent at different noise levels, and these correspond to
features in the individual SNR curves. Low noise rarely
forces an oscillator in the chain into the opposite well.
Consequently, the chain as shown is mainly confined
to the black well, except for small segments that make
minor excursions into the white well. The binary SNR's
of the component oscillators are close to zero. Higher
noise begins to move the chain, and large segments switch
wells. The domains of black and white segments expand
and contract as oscillators tug their coupled neighbors
back and forth, and the binary SNR's rise. Still higher
noise (20 dB at e = 1/'4, 30 dB at s = 16) maximizes
the degree of entrainment between noise and signal. The
chain is synchronously forced between the two potential
wells, and the oscillator SNR's are maximized. Greater

right well is lower)/2. (4)

At low noise the oscillators are confined to one well
(say, the left) regardless of whether it is low or high
and at occupancy (100% + 0%)/2 = 50%. At high
noise an oscillator is equally likely to be in either
well so that occupancy is (50% + 50%)/2 = 50%. At
synchronization, the oscillators hop back and forth so as
to remain always in the lower well and at occupancy
(100% + 100%)/2 = 100%.

Figure 4 illustrates how the occupancy of a chain (and
hence its degree of synchronization) peaks at the same
noise power as the SNR of a constituent oscillator. One
can show that the occupancy is a measure of the power
at the signal frequency, averaged over the array [8]. It
essentially computes the power in one bin of the discrete
Fourier transform, and hence is faster than the full Fourier
transform. Since the occupancy is faster to calculate

noise overwhelms the coupling, forcing different parts of
the chain to become uncorrelated. Adjacent oscillators
occupy opposite wells, and the SNR's drop. The behavior
of chains of 512 oscillator is very similar [10].

When the noise is adjusted to maximize the SNR of an
individual oscillator, there is both spatial organization and
temporal periodicity in the chain as a whole, as is clearly
seen in Fig. 3. One might have expected disorganization
in the presence of such a large noise. However, the
coupling, in cooperation with the noise and the bistable
potential, organizes the chain in space and time. This
spatiotemporal organization of the array can be quantified
by the occupancy function. Noting that the periodic
forcing effectively rocks the bistable potential, we define
the occupancy as the percent of oscillators occupying the
lower well at the extremes of one forcing cycle (namely,
at tu t = 7r /2 and ru t = 3m /2):

occupancy = (% oscillators on left when left well is lower

+ % oscillators on right when
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FIG. 3. Sequence of spatiotemporal dynamics of a
101 oscillator array. In each frame, the array is horizon-
tal and time increases upward (T = 27r/ru) One well of.
the bistable potential is colored black, the other white. Local
noise power increases from left (—10 dB) to right (40 dB) in
10 dB steps. Noise-induced synchronization corresponds to
maximum SNR: 20 dB at e = 1/4 (top sequence) and 30 dB
at e = 16 (bottom sequence). Other parameter values are as
in Fig. 1.
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FIG. 4. Occupancy of a chain of 101 oscillators superimposed
on the SNR of the middle oscillator of the chain. The (global)
average occupancy of the lower well peaks at the same noise
power as the (local) SNR of the middle (5 I st) oscillator.
Coupling e = 1. Other parameter values as in Fig. 1.
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numerically than the SNR, it is a more convenient tuning
parameter by which to optimize the response both
global (synchronization) and local (SNR)—of the chain.

In our numerical studies, the peak SNR of an oscilla-
tor coupled into an array corresponds (roughly) to a syn-
chronous hopping rate of 2, namely once back and forth
per forcing period. Indeed, the shift with coupling in
the peak SNR mirrors the shift in the hopping rate: the
larger the coupling, the more noise is required to achieve
a given hopping rate. Furthermore, as soon as increas-
ing noise forces the hopping rate past 2, the hopping rate
diverges. This divergence naturally divides the dynam-
ics into a potential-dominated regime (where the hopping
rate remains bounded by 2) and a noise-dominated regime.
The divergence in the hopping rate also rejects the rela-
tively rapid decline in the occupancy function as the local
noise power passes through its optimal value [10).

In summary, spatiotemporal order and enhanced sto-
chastic resonance can be induced in a locally and linearly
coupled array of overdamped nonlinear oscillators by the
optimization of a single adjustable parameter (noise or
coupling) Signific. ant synchronization and enhancement
can be obtained using even a small number of oscillators.
Peak performance of a single oscillator corresponds to a
global organization of the chain in space and time; noise,
coupling, and bistable potential cooperate to create spatial
order, temporal periodicity, and peak signal-to-noise ratio.
We believe that these phenomena transcending our inten-
tionally simple model are in fact quite general, and may
be important in the design and operation of extended sys-
tems, from biological receptors to remote sensing arrays.
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