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Ab Initio Calculations of the Giant Magnetoresistance
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Ab initio calculations are presented for the giant magnetoresistance (GMR) of Fe/Cr multilayers.
The electronic structure of Fe/Cr superlattices is calculated within the spin density functional theory.
The spin-dependent bulk impurity scattering is treated in a fully quantum mechanical way using a
Green function formalism. The transport is described quasiclassically. The calculations suggest that
the GMR in thin multilayers is mainly determined by the electronic structure of the layered system.
Spin-dependent impurity scattering can reduce, increase, or invert the effect.

PACS numbers: 75.50.Rr, 71.25.Pi, 72.15.Gd

The discovery of giant magnetoresistance (GMR) in
magnetic multilayer systems [1,2] initiated experimental
and theoretical work to elucidate the microscopic ori-
gin of the phenomenon. The GMR effect occurs when
subsequent ferromagnetic layers in the stack have their
magnetization antiparallel. Application of an external
magnetic field brings the magnetization of the ferromag-
netic layers into alignment and causes a decrease of
resistivity for both the current-in-plane (CIP) and the
current-perpendicular-to-plane (CPP) geometries. Most
theories [3—8] try to explain the GMR by spin-dependent
scattering at interfaces or bulk defects but neglect the
electronic structure of the multilayer system. Attempts
to include the electronic structure have been made by
several authors [9—11]. Oguchi [9] examined the depen-
dence of the GMR on Fermi velocities but neglected the
specific inhuence of scattering. Schep, Kelly, and Bauer
[11] investigated the influence of the electronic structure
on the GMR effect but only in the ballistic regime of
transport, which is not the regime where the experiments
are carried out. The first attempt to include the electronic
structure of the layered system and the scattering by in-
terface roughness was done by Butler et al. [10] using
a coherent potential approximation to simulate interface
roughness. All calculations predict a strong influence of
the electronic structure of the multilayer on the GMR.

In this paper we present ab initio calculations of the
GMR for layers thin compared to the electron mean free
path, by including the full electronic structure of the su-
perlattice, as well as a first principles description of spin-
dependent electron scattering by impurities. The transport
is treated quasiclassically by solving the linearized Boltz-
mann equation, an approach recently successfully applied
to the calculation of residual resistivities for dilute ferro-
magnetic alloys [12—14].

The GMR in magnetic multilayers is defined to be
P

GMR = —1,

where a and o. are the conductivities of the multilayer
for parallel and antiparallel alignment of subsequent
ferromagnetic layer magnetization, respectively. Experi-
mentally, one can be sure of the realization of parallel
alignment due to the marked transition from strong to
weak magnetic field dependence of the conductivity at the
saturation field. Because of real structure at the interfaces,
on the other hand, the ideal antiparallel alignment is
probably never realized at zero field, and the GMR
given by (1) will always be an upper bound of the
experimentally found value.

To be specific, the main part of our considerations
focuses on (100) oriented Fe Cr, layer sequences (m
monolayers Fe followed by n monolayers Cr), where
the Fe layers are intrinsically ferromagnetic and the Cr
layers are intrinsically antiferromagnetic. We consider
only cases with n even, because otherwise no antiparal-
lel alignment of subsequent Fe layer magnetization (up
to n = 24) appears. Ab initio electronic structure cal-
culations have been performed using spin-density func-
tional theory within the frame of an optimized LCAO
(linear combination of atomic orbitals) scheme [15]. For
initially parallel and antiparallel spin configurations of
subsequent Fe layers, the iterations converge to local
energy minima corresponding to those configurations,
respectively. The unit cell is prolonged in stacking di-
rection and is to be doubled in the antiparallel case com-
pared to the parallel one. The lattice parameter was cho-
sen to be that of bcc bulk Fe. For the self-consistency
of the potentials 1440 k points in the Brillouin zone
have been used. The final electronic structure was cal-
culated at a mesh of 74400k points in the Brillouin zone.
The Fermi surface and the necessary Fermi surface inte-
grations have been treated using a modified tetrahedron
method [16]. Given the band structure et, of the just
described situation, potential scattering causes transitions
from a state k into a state k', where k is a shorthand no-
tation for the wave vector k and the band index v, with
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probability

(2)

o. indicates the spin direction and T is the scattering T
matrix. We restrict our considerations to spin-conserving
scattering only, assuming it to be dominant. For a
concentration c of scatterers the electron lifetime is

(rk ) = c+Pkk'.
k/

Averaging over the Fermi surface leads to a state-
independent but spin-dependent relaxation time

Zk ~(&k sF)rk7.
X.k ~(&k &F)

(4)

eF is the Fermi energy. The spin dependence of the scat-
tering is expressed by the anisotropy ratio P = rt/rt.
Following Mott's idea [17],the transport properties of fer-
romagnetic alloys can be explained by assuming conduc-
tion in parallel by electrons in the majority bands (spin
up, f) and the minority bands (spin down, J). For each
spin direction the quasiclassical Boltzmann equation was
solved in relaxation time approximation, which leads to a
conductivity tensor per spin direction

spin directions must be equal, since the spin up wave-
function amplitudes of one-half of the Cr atoms equal the
spin down wave-function amplitudes of the other half.
This corresponds to P = 1. Equation (8) now implies

Hence the lifetime completely drops out
of the GMR expression,

2+k 6(sk —sF)vk vk,

where vk. are the Cartesian components of the Fermi
velocity. This GMR is completely determined by the
Fermi surface and Fermi velocities as functions of the
magnetization configuration, and is hence a pure band-
structure effect. Note that this result is different from
that obtained for the ballistic regime [11], and, in a
certain sense, is more general, since the conductivity itself
remains dependent on the scattering. The obtained GMR
values are about 200% in CIP and 700% in CPP [dots
in Figs. 1(a) and 1(b)), which is in agreement with the
experimentally obtained maximum CIP-GMR (220%) for
ultrathin Fe layers [18].

The spin dependence of the relaxation time (P 4 1)
due to scattering centers in the ferromagnetic layers (Cr
impurities in Fe layers, for example) leads to modifica-
tions. GMR is now to be calculated via (1), (6), and (7).

o- = e r /6(sk —sF)vk v„;
k

CF = 0 + CJ (6)

In the antiparallel configuration the electronic states are
spin degenerate, and the conductivity becomes

vk is the Fermi velocity. The integration is performed
over the Fermi surface of the parallel configuration of the
layered system. Addition of the two currents yields the
total conductivity
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If we assume z to be the growth direction of the layered
system, CIP corresponds to the xx or yy component of
the conductivity tensor and CPP to the zz component
in Eqs. (5) and (7). 7" is the relaxation time in the
antiparallel configuration and can be obtained by addition
of the scattering operators. For equal concentration of
defects in adjacent ferromagnetic layers the relaxation
time is then given by
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The simplest situation appears if all scattering centers are
localized in the antiferromagnetic Cr layers (for example,
Fe impurities). In this case, the lifetimes r for both

FIG. 1. Calculated GMR for Fe3Cr, in dependence on the
Cr layer thickness n = 2, 12 monolayers (ML). The results
assuming Cr defects in Fe layers are indicated by squares (P =
0.11). Dots mark the results for spin-independent scattering
(P = 1) and diamonds for P = P;„. (a) CIP geometry
(closed symbols). (b) CPP geometry (open symbols).
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min

l V
Zk ~(+k +F)+k;

T T

Zk ~(&k &F)~k,
(10)

That is, GMR can be enhanced or reduced by spin-
dependent impurity scattering. The results for P = P
are shown in Figs. 1(a) and 1(b) (diamonds).

Finally, the combination of alternating Fe layers with
Cr defects (P = 0.11) and with Cu defects (P = 3.68) is
discussed. For simplicity, equal concentration is assumed.
The relaxation times in parallel configuration are

and in antiparallel configuration

DT + DT DT DT
(12)

and

The transition matrix elements T~~ for the scattering of
Bloch electrons by an impurity cluster embedded in an
ideal host crystal are described within the KKR Green
function formalism [16,19—21]. Under the assumption
that the extension of the impurity is small compared to
the layer thickness, the scattering properties are described
by the spin-dependent relaxation times calculated for the
Cr impurities in Fe [12,14]. For this case, P = 0.11, that
is, the majority electrons are scattered strongly at a Cr
defect and the minority electrons pass the defect weakly
scattered.

The results, assuming Cr defects in the Fe layers,
only lead to a GMR of about 600% in CIP [solid
squares in Fig. 1(a)] and 2500% in CPP [open squares
in Fig. 1(b)], which is larger than the experimental results
[22—25]. The anisotropy ratios P obtained in [12,14] for
a variety of defects scatter from 0.1 to 10. Therefore,
GMR is discussed as a function of P in relaxation time
approximation. If only one type of scatterer is included,
GMR takes on a minimum for
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FIG. 2. Calculated GMR for Fe3Cr„with Cr and Cu defects
in adjacent Fe layers in CIP (closed squares) and CPP (open
squares). For n ~ 10 the inverse GMR is obtained.

same layer they would merely act as an effective scatter-
ing potential. ) One should note that in Fig. 2 the inverse
effect occurs in CIP but not in CPP. Experimentally,
the inverse effect was obtained for Fe/Cr/Fe/Cu/Fe/Cu
multilayers [26], as well as in Fe& V, /Au/Co multilay-
ers [27], both in CIP geometry. Preliminary calculations
for Fe3Cu9 multilayers with Cr and Cu defects in subse-
quent Fe layers show a CIP-GMR of —35% and a CPP-
GMR of 200%. Concerning V instead of Cr defects, the
scattering potential of V impurities in Fe is very similar to
Cr defects in Fe. The spin anisotropy of Fe(V) is 0.15 in

comparison to 0.11 for Fe(Cr).
Generally, it should be noted that CPP-GMR for com-

parable scattering is always larger than CIP by a factor
of about 4 in agreement with experimental results [25].
This factor stems from the difference of the Fermi velocity
components in plane and perpendicular to the plane, and
it finds its natural explanation in the fact that the carriers
with large momentum components in direction of the cur-
rent are more influenced by the superstructure in CPP.

Moreover, GMR (Figs. 1 —3) shows characteristic vari-
ations with layer thicknesses. Both the magnetic moments

Dt + Dt (Dt Dl1 1
i

1

T ( Tcq rcu
(13)
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AP AP (14)

respectively, where the superscripts + and —correspond
to majority and minority electrons. D and D are the
local spin-dependent density of states in a ferromagnetic
layer where spin-o electrons are majority or minority
electrons, respectively. In the considered configuration
the factors have been chosen to be 1. The conductivity
in the antiparallel state including both defects is given by
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The results are shown in Fig. 2. The main message from
this calculation is that the GMR can be reduced drasti-
cally or even change sign if scatterers with different spin
anisotropy are combined. (If they would be located in the
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FIG. 3. Calculated GMR for Fe Cr4 in dependence on the Fe
layer thickness m = 3, 12 monolayers (ML) (P = 0.11) in CIP
(closed squares) and CPP (opert squares).
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and the averaged Fermi velocities show little dependence
on the layer thickness. The variations stem from a subtle
game of the superstructure gaps on the Fermi surface. In
Fig. 3, these variations are reminiscent of experimentally
found oscillations [28].

In conclusion, it has been shown that GMR under
the assumption of a coherent multilayer system and a
spin-independent impurity scattering is determined by the
changes of the electronic structure as a function of the
magnetization direction. Spin-dependent impurity scatter-
ing can enhance or reduce the effect. The combination of
impurities with different spin anisotropy can cause in par-
ticular the inverse GMR.

One of the authors (I. M.) would like to thank P. Levy
and P. H. Dederichs for valuable discussions.
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