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Peak Effect in Twinned Superconductors
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A sharp maximum in the critical current J, as a function of temperature just below the melting
point of the Abrikosov flux lattice has recently been observed in both low- and high-temperature
superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin
planes. We propose that this peak signals the breakdown of the collective pinning regime and the
crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and
can account for the steep drop of the differential resistivity observed in experiments.

PACS numbers: 74.60.Ge, 05.60.+w, 68.10.—m

The discovery of the high-temperature copper-oxide su-
perconductors has renewed the experimental and theoreti-
cal interests in the properties of the mixed state of type-II
superconductors in a magnetic field [1]. Various experi-
mental techniques, including standard current versus volt-
age curves, are used to measure the critical current density
J, needed to depin the Aux-line array and to investigate its
temperature and field dependence. Naively J,. is expected
to decrease monotonically as the temperature or the ap-
plied field are raised towards the mean field H, q(T). It
has, however, been known for some time that an abrupt
increase in J, as a function of field or temperature can oc-
cur in conventional low-temperature superconductors near
H, 2 [2]. A qualitative explanation of this phenomenon,
referred to as "peak effect, " was proposed a long time ago
by Pippard [3], who argued that the increase in J, is as-
sociated with the softening of the shear modulus c66. A
more quantitative explanation of the peak effect as aris-
ing from the softening of all the elastic moduli of the Aux

lattice near H, 2 was presented by Larkin and Ovchinni-
kov [4].

Recently a sharp maximum in J, as a function of
temperature has been observed in both untwinned [5—8)
and twinned [9] Y-Ba-Cu-0 (YBCO) crystals, as well as
in some low-temperature superconductors [10,11]. The
new feature is that in this case the peak occurs below
H, 2, at the temperature T, where the flux lattice melts
into a flux-line liquid. In view of the old suggestion by
Pippard [3] and the work by Larkin and Ovchinnikov [4],
it is natural to associate it with the softening of the shear
modulus c66 at the melting point. In twinned YBCO
crystals the peak depends strongly on the orientation of
the applied field relative to the twin planes: It is largest
for flux motion along the twin planes and external fields
aligned with the c axis, and it weakens as the field is tilted
out of the plane of the twins [9]. In untwinned YBCO
single crystals the peak is much smaller: It shifts towards
T, and becomes less pronounced as the sample purity is
increased [6].

In this paper we propose two distinct mechanisms
for the peak effect. First by examining the temperature
dependence of the critical current from collective pinning
by point defects [1,12,13], we show that J,. can exhibit a
sharp rise near T for a narrow range of magnetic fields
due to the abrupt decrease of the shear modulus. This may
provide a mechanism for the small peak effect observed
in untwinned single crystals. New results on anisotropic
collective pinning in samples with a family of parallel
twin planes are also presented and show that the same
mechanism is, in principle, operative when vortices are
pinned collectively by an array of twin planes. On the
other hand, collective pinning is very weak in this case
and cannot account for the large increase in J,. observed
in twinned samples. In the second part of the paper
we discuss a second mechanism for a peak in J,. that
is operative in twinned samples: the strong pinning of
individual vortices on the twins. This mechanism can
account for the sharp drop in the resistivity observed in
twinned materials.

The critical current density of an elastic medium
pinned by weak disorder can be calculated using the
collective pinning theory [4]. Weak disorder destroys
the translational order of the Aux lattice and results in
the coherent pinning of vortex bundles of extent I., and
R, in the directions parallel and perpendicular to the
applied field H. The pinning lengths R, and L„defined
as the distances at which the lattice distortion due to
disorder is of the order of the range sc of the pinning
potential, are determined in terms of the elastic constants
of the lattice by balancing the elastic deformation energy
against the pinning energy. The critical current J,, is
the current where the Lorentz force balances the pinning
force, or BJ,/c = QW/V, . , wh. ere W = n„(f ) is the
mean square pinning force, with n~ the volume density of
pins and f the elementary pinning force, and V,. = R, L, .

We consider a three-dimensional fIux-line array in a
sample with an external magnetic field aligned with the
c axis, which is chosen as the z direction. Disorder
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is described as a quenched random potential per unit
length V(r) with zero mean and Gaussian correlations,
V(r)V(r') = I (r, r'). The overbar denotes the disorder
average, and the correlator I'(r, r') is determined by the
strength and geometry of the disorder. The static elastic
deformation of the lattice due to disorder can be evaluated
by a perturbation theory in the pinning potential [1,12].
To lowest order in perturbation theory the components of
the mean square displacement U;~(r) = (Au;(r)Aui(r))
induced by the random potential [Au;(r) = u;(r) —u, (0)
and the brackets denote a thermal average] are given by
[1,12]

(R, ) A, this is the so-called large-bundle regime), the
dispersion of the tilt modulus can be neglected and

j„H i 3 3B 1
J~ = jo ~ z (1 + T/Tdp)

jo 4~) 16H,2 c66c44

Here jo = cH, /3~6~ A is the depairing current and

j,„=jo(Waos/eo) / is the single-vortex critical cur-
rent density. The critical current contains both an
explicit temperature dependence from the thermal
smoothing of the pinning potential and an implicit
T dependence through the superconductor's pa-
rameters that determine the elastic constants. To
extract the strong temperature dependence of c66
near melting, we write c66 = c66r(T/T ), where

c66 depends weakly on T and the function r drops
sharply from unity to zero at T . This is defined
by (u (T )),h = cI ao, with cr. = 0.1 —0.3 the Lin-
demann parameter. The critical current is then J, —
1/[c66r(T)] [1 + T/T~pr / (T)] ' /, where Td

2aos Qc«c44/A. The temperature dependence of j,
near T is controlled by the parameter n = T /Td
(cl ao/s) . For H = 6 T and temperatures near T, , we
use s = 100 A and cl = 0.2 to obtain T /Tqp = 0.1.
At low temperatures (T «Tdp, T ) J, decreases very
slowly with T. At higher temperatures, but still well
below T, the elastic constants are only very weakly
temperature dependent and the temperature dependence
of J, is controlled by thermal fluctuations, yielding a
decrease of J, as T grows. As T is approached from
below, c66 softens and the flux lattice can better adjust to
the pinning centers, raising J, . Finally, at T the function
r(T) drops sharply in a narrow temperature range giving
rise to a sharp maximum in J„provided T /Tdp ( 1.
This mechanism can therefore yield a peak in J, only at
large fields, where this condition can be satisfied.

For larger defect densities the dispersion of c44 is
important (this is referred to as the small-bundle regime).
In this case

d /dq dq
(2~)3 (2'�)3

&& G~k(q, ~ =0)G,I(q', ~ =0)Wai(q + q'), (1)

U;, (r) =

&/2j~ = jo 2 c66(1+ T/Tdp)
C

jo 47r l 16$27r ]/2 3/2X exp- c44 c66 (1+ T/Tdp)j„H2) 8
Again, the critical current can be written as
J, —exp( —ar / [1 + T/Tdpr'/ ] ), where a is prac-
tically independent of temperature near T . In this

CI 0case we find J, —e below T and J, —e ' as
T ~ T, yielding a sharp rise of 1, in a very narrow
temperature range. This mechanism can be responsible
for the small peak effect observed in untwinned single
crystals. It can, however, only account for the rise in

J, at T . The subsequent drop of J, to zero predicted
by the collective pinning theory occurs above T, in a
region where the theory does not apply. Furthermore,
the first order transition is in practice smeared out by

with G;/(r, t) the elastic Green function of the lattice,

f„(r) = —n(r, t)V'V(r) the pinning force per unit vol-

ume, and Wq~ (q, q') = fp, (q)fp/(q') the pinning force
correlator. Here n(r, t) = +„6 (r3 —r, (z, t)), with
r = (ri, z), is the coarse-grained microscopic vortex den-
sity field [the flux lines are parametrized by their trajecto-
ries (r, (z, t))]. The main contribution to Eq. (1) for the
case of interest below comes from the transverse part of
the elastic Green function, given by

2"
G,, (q, cu) = (2)

icing + C6—6q3 + C44(q3, q, )q2

where 2;, = 6;~ —qi, q3 J, with q3, = q3;/q3, and c66
and c44(q3, q, ) are the shear and tilt moduli of the vor-
tex lattice, respectively. Thermal fluctuations can be in-
corporated in the perturbation theory by separating out
in the vortex positions r, (z, t) the deviation from equi-
librium due to pinning from that due to thermal ef-
fects, as described in [13]. The main effect of ther-
mal fluctuation is the replacement of the upper cutoff
qo = s

' in the wave-vector integral by a thermal cutoff
qT (s + (~ )th) = qo(l + T/Tqp) '/ The de-.
pinning temperature Td p is defined by (u (Tdp))th
where (u (T)),h is the mean square thermal excursion
of the vortices about their equilibrium positions. When
the vortex array is described as an elastic continuum,

Tdp = 2aos Qc«c44/A, with ao = QPo/B the mean in-
tervortex separation, A the penetration length in the a-b
plane, and c44 = c44(q3 = 0, q, = 0) [14].

When the flux array is pinned by isotropic point disor-
der, the random potential is short ranged in all directions
and I (r, r') = yet ~(r —r') and y = (Uog ) np[1 +
6(nps )], with Uo the depth of an individual pinning
potential per unit length. The pinning force correla-
tor is isotropic, W,~(q) = W6;i(27r) 6~ 1(q), with W =
y/s ao. The pinning lengths and the critical current for
this disorder geometry have been calculated elsewhere
[12], but it is instructive to display the dependence of
J, on the elastic constants. For low defect densities
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sample inhomogeneities, and one can never access the
region where the function r is so small that T /Td~~r,
or r ~ 0.01 [15]. For these reasons we associate the
observed dmp in J, with the onset of plastic motion of
vortices discussed at the end of the paper.

We now consider collective pinning in a sample with
a single family of twin boundaries of mean separation d
spanning the z-y plane. The field is in the z direction and
a current J is applied normal to the twins. This is the ex-
perimental geometry where the peak in J, is strongest [9].
We define two different pinning lengths, R,

~~
and R,.~, cor-

responding to the size of the vortex bundle in the directions
parallel and transverse to the twin planes, respectively. If
R,z » d, pinning occurs via the collective action of many
twin planes. Each twin is described as a sheet with a large
concentration of point defects. The correlator of the ran-
dom potential is given by I (r, r') =

@~g(~x —x'~) B(y-
y')6(z —z'), where y~ = (Uog ) nI [I + 6(s/d)] is

(2)
proportional to the areal density nI of pins on each
twin plane, and g(x) describes correlations in the dis-
tribution of twin planes. On distances large compared
to the twin spacing d the twins are essentially uncorre-
lated [g(x) = (1/d) 6(x)] and the pinning force correlator
is W;~(q + q') = Wr6;~(2') 6( ~(q + q'), with Wr

yt/s dao. Collective pinning in this regime is very sim-
ilar to collective pinning by point defects in bulk. The
dependence of J, on the elastic constants and tempera-
ture is identical to that obtained for isotropic point dis-
order, with the replacement W ~ W~. A peak effect in
densely twinned samples may then in principle arise from
the same mechanism discussed above for untwinned crys-
tals. On the other hand, the mean squared pinning force
Wz is still determined by the effective volume density of

(2)
pins, which is now given by np ao/s d. As a result, the
anisotropy due to the twin planes increases the pinning
volume of a factor (d/d~), with d~ —(n„) ', corre-
spondingly decreasing the critical current. For this reason
collective pinning in twinned samples is very weak, es-
pecially if d » a0, and cannot account for the observed
critical currents.

The dominant pinning mechanism in twinned crystals,
particularly in sparsely twinned samples, is the strong
pinning of individual vortex lines on the twin boundaries.
As T is approached from below intervortex, interactions
weaken and the vortices on the twins become more
strongly pinned than those in the channels between
twins. The main contribution to the critical current arises
then from pinning of single vortices on the twins, and
particularly from those vortex segments that are strongly
pinned in rare regions with an excess of impurities. As
described below, it is the rise in the fraction of such
strongly pinned vortex segments on the twins with T that
gives a peak in J, in twinned samples.

To evaluate the critical current due to strong pinning
in regions with excess impurities, we consider a represen-

tative vortex line trapped near a twin plane by the large
concentration of point defects on the twin and interact-
ing with its neighbors at an average distance a0 in the
lattice. The remainder of the lattice, even though not di-
rectly pinned by the twin, is held in place by interactions.
The magnitude of the elastic force associated with displac-
ing a length L of the representative fluxon a transverse
distance u from its equilibrium position is

F,~(u, L) —e~ —+ c66uL . (3)

The first term is the force associated with tilting the
representative vortex, with e~ the tilt energy per unit
length. The second term arises from the interaction with
the neighbors. The typical pinning force exerted on a
vortex segment of length L is [F2(L)]' —(W~g L)'
with W~ = yt/$ ao the mean squared pinning force
per unit volume due to a single twin of thickness
The most effective pinning arises from rare regions
with an anomalously large impurity concentration that
pin strongly the vortex segment. The pinning forces
F~ in these regions exceed the typical pinning force
[F~~(L)]'~ and give the dominant contribution to 1, The
problem of strong pinning of vortex lines is analogous
to that of incommensurate charge density waves and can
be rigorously discussed following Ref. [16]. Here we
prefer, however, to follow the more phenomenological,
but physically intuitive, discussion given by Coppersmith
[17]. The condition for the strong pinning is F~(g) )
F,~(s) [4,18]. The critical current J, is proportional to the
density n of the strongly pinned vortex segments where
this condition is satisfied. To find it we note that the
pinning force F~ scales as the impurity excess in the
region, and it can be shown to be Gaussian distributed
with variance (F2)' [17]. The density n of vortex
segments that are strongly pinned in these excess-impurity
regions is then

dF e "'" ""'
P

0 F„(I.)
where we have used u —$. Using Eq. (3), one can
show that the integral over L is dominated by the length
scale L" —Qe~/c66, where the single-vortex tilting force
balances the force of interaction of the pinned vortex with
the rest of the lattice. The critical corrent J, is then

J, —n —exp[ —(c66/c6„) ~ ], (5)

where c66 = (2W~/~~~) ~ As T approach. es T, the
shear modulus softens and drops to zero. Correspond-
ingly, J, grows according to Eq. (5). The result given in

Eq. (5) applies for c66 ~ c66. The mechanism of strong
pinning just described is also operative in untwinned sam-
ples where vortices are pinned by isotropic point disorder.
We note that strong pinning of isolated vortices yields the
same functional dependence of J,. on c66 as collective pin-

3/2
ning of small bundles. In both cases J, —exp( —ac66 ).
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P(Ep)— dI (Ep+ 6+el ) /2%i 1.$ —2Ep C66/Wl g

(6)
The typical creep barrier at J —J, is E„—W~g /c66.
At arbitrary currents the creep barrier becomes E„(J)—
W~ $ /c66f(J/J, ) The fu. nction f(J/J, ) decreases as

J/J, grows, but its explicit form cannot be obtained

by our dimensional analysis. The resulting thermally
activated resistivity is

1 Wis f(J/J, ) )
p ——exp 7J, Tc66

with J, given by Eq. (5). The temperature dependence
of the resistivity at a fixed current is governed by the
temperature dependence of J, . When c66 decreases near
melting, the creep resistivity drops exponentially. This
result applies for J ~ J, and temperatures near, but
below, melting, where c66 is not too small, c66 ~ QWtg.

In the regime just described dominated by strong pin-
ning of individual vortex segments on twin planes, inter-
actions are still strong enough to hold the lattice together
so that the remainder of the Aux array can be described
as an elastic continuum. On the other hand, in the pres-
ence of an applied current the competition between strong

In untwinned crystals a is essentially the same for these
two pinning mechanisms. In twinned crystals collective
pinning of vortex bundles is very weak (a —1/W) and
strong single-vortex pinning in regions with excess impu-
rities (a —1/W~) controls the critical current even when
the condition for single-vortex pinning is satisfied only
locally. In this case the main contribution to J, arises
from pinning energy barriers which are large compared to
the typical barrier E„(L*)—(W~ $ /c66) (c66/c66)', but
small compared to the scale of the elastic energy of in-
teraction of the vortex segment with the rest of the lattice.6.eL* —4 ".e —(W e'/ 66) ( 6./ 6.)'"

Most experiments do not measure the critical current
as defined theoretically, but rather the nonlinear resis-
tivity. For comparison with experiments it is important
to discuss the small finite resistivity due to the creep of
strongly pinned vortex segments at low measuring cur-
rents, J ( J, . To find the energy barriers that determine
the creep rate, we consider the distribution of barriers sep-
arating different metastable states in the regime of strong
pinning. As discussed above for pinning forces, it has
been shown that the impurity energies 6F of strongly
pinned vortex segments of length L are described by a
Gaussian distribution —exp[ —(BE) /2W~L$ ] [17]. A
gain 6F in pinning energy is associated with a cost
6+, ~

= e~s /L + c66$ L in elastic energy. The result-

ing activation barrier is E„=6E —6+,~. The distri-
bution function of creep barriers can be evaluated in the
following: [17],

single-vortex pinning at the twin boundaries and the elas-
tic deformations of the portions of flux lattice between
twin planes eventually leads to the development of large
strains in the regions next to the twins. This results in
the breakup of the lattice and the onset of plastic How.
An approximate condition for the onset of plastic flow
can be obtained by equating the total Lorentz force per
unit area on the Aux lattice in the channel between two
twins —ft.d, with ft = BJ/c the Lorentz force per unit
volume parallel to the twins, to the force due to elastic
stresses —c66(u/R )R in a region of linear size R —ao,
for u —ao. This defines a current scale J„—cc66/Bd
The onset of plastic fiow at J —J„corresponds to a sharp
rise in the differential resistivity and a drop in the critical
current.
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