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Spontaneous Ordering of Arrays of Coherent Strained Islands
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The energetics of an array of three-dimensional coherent strained islands on a lattice-mismatched
substrate is studied. The contribution of the edges of islands to the elastic relaxation energy always has
a minimum as a function of the size of an island L, and the total energy E(L) may have a minimum at
an optimum size L,~, . Among different arrays of islands on the (001) surface of a cubic crystal, the
total energy is minimum for the 2D periodic square lattice with primitive lattice vectors along "soft"
directions [100] and [010]. This is a stable array of islands which do not undergo ripening.

PACS numbers: 68.35.Bs, 43.60.+d, 68.65.+g, 85.42.+m

Spontaneous formation of ordered nanostructures on
crystal surfaces is at present a subject of active experimen-
tal and theoretical research. One mechanism of formation
is periodic faceting [1—3] observed on various vicinal, low-
index, and high-index surfaces [4]. The theory of Ref. [3]
shows that a periodically corrugated surface corresponds to
the minimum of the free energy E = Ef„,&, + E,dg„+
AE, l, where Efa ts is the free energy of facets, E,dg„ is
the short-range energy of edges, and AE, l is the elastic re-
laxation energy, caused by the discontinuity of the intrinsic
surface stress tensor 7.

;~ at crystal edges.
Another class of self-assembled nanostructures is as-

sociated with periodically ordered structures of surface
domains, e.g. , with ordered arrays of monolayer-height is-
lands in heterophase systems [5]. The theory of Refs. [6,7]
shows that a 1D periodic domain structure corresponds
to the minimum of the free energy E = Eb«„d + AEel,
where Eb,„„d is the energy of domain boundaries and AE, t

is the elastic relaxation energy. The energetics of a dilute
array of strained islands was studied in Ref. [8] for the case
where islands have a planar top surface, and the height of
islands is kinetically limited to a value considerably smaller
than the lateral size. In Ref. [9],a relation was established
between the size of a single surface domain (for low do-
main concentration) and the minimum separation between
them at intermediate concentration.

On the other hand, the crystal growth on a lattice-
mismatched substrate often proceeds via formation of
essentially three dimensional isla-nds [10—14] on the bare
substrate surface for Volmer-Weber (VW) growth or on
the wetted surface for coherent Stranski-Krastanow (SK)
growth. Formation of three-dimensional islands leads in
SK growth mode to a reduction of the strain energy and to
an increase of the surface energy as compared to the planar
case [15,16]. The former is proportional to the volume
of the island, and the latter is proportional to the surface
area of the island. If the size of a three-dimensional island
exceeds a critical size, further growth of the island becomes
energetically favorable. It is generally assumed that, if the
material supply is interrupted, the further growth of large

islands occurs at the expense of the evaporation of smaller
islands, islands are thus undergoing ripening.

Surprisingly, experiments show in most cases rather
narrow size distribution of the islands [12—14], which does
not follow from the SK growth mode itself. Besides that,
the authors of Ref. [14]have reported that coherent islands
of InAs form, under certain conditions, a quasiperiodic
square lattice on the GaAs(001) surface. The periodicity
and the island size do not change with time.

Experimental results of Ref. [14] indicate the existence
of a new class of self-assembled nanostructures, namely,
ordered arrays of coherent strained three-dimensional
islands. Here we study the energetics of an array of
such islands under the constraint of the fixed amount of
the deposited material Q assembled in all islands, where

Q is defined in numbers of monolayers. We treat both
the substrate and the deposited material as elastically
anisotropic cubic media with equal elastic moduli A;~I
and the lattice mismatch between the two materials being
equal to eo = ha/a, where a is the lattice spacing.

The energy of a uniformly strained film of thickness

(Qa) on a (001) substrate is given by E,l
= AeoA(Qa),

(o)

where the elastic modulus A equals (c» + 2cl2) (c»—
clz)ctt, cll and cl2 are elastic moduli in the Voigt
notation, and A is the surface area. The change of the
energy of the heterophase system due to the formation of
a single island is

~Eisl ~Efacets + Eedges + ~Eel . (1)
Here AEf t f[y(m) (m n) ' —y(n)] dA, where
y(m) is the surface energy of the tilted facet with the
orientation m, and n = (0, 0, 1) is the normal to the
Oat surface. We assume for simplicity that the quantity
y(m)(m . n) ' has, besides the cusped absolute mini-
mum for the (001) surface, also cusped local minima
for four equivalent facets, (kOl), (Okl), (kOl), and (Okl).
Then, under a range of conditions, the minimum of AE;, l

will correspond to an island bound by (kOl), (Okl), (kOl),
and (Okl) facets, e.g., to a pyramid or to a prism as shown
in the inset of Fig. 1.
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tilt angle of facets p, and po = tan '(k/l). The first term
in Eq. (2) is the contribution of the lattice mismatch to

-(l)
the elastic relaxation energy AE, ~

. Detailed analysis of
Ref. [17] shows that the term fz—(po)7 epL is

—2.5
f2(—po) «oL u; (r) ~;i(r) dA —7;,

Vr,
(flat)X 6;jap secppi + ~ j 6 jEpi

—3.0
0 0.5

FIG. 1. The energy per unit area AF, ~
+ E;„„,=(~)

(Qa)Aep pp X [ g;(q)] for different arrays of coherent
strained islands versus the fraction q of the surface covered by
islands. (1) 1D array of elongated prisms; (2) 2D square lattice
of pyramids with primitive lattice vectors (1,0, 0) and (0, 1, 0).
(3) 2D "checkerboard" square lattice of pyramids with primi-
tive lattice vectors (1, —1,0) and (1, 1, 0). (4) 2D hexagonal

lattice of pyramids with primitive lattice vectors (—z, —2, 0)
and (1,0, 0). Curves 3 and 4 terminate at maximum possible
coverages for given arrays. The inset shows schematic shapes
of islands.

The second term in Eq. (1), E,ds„, is the short-range

energy of edges. The third term, AE, i, is the change of
the strain energy due to elastic relaxation, termed below
"the elastic relaxation energy. " For lattice-mismatched
systems with edges, there are two sources of the strain field,
namely, the lattice mismatch ep and the discontinuity of the
intrinsic surface stress tensor 7.

;~ at the edges. Therefore

AE, l is a quadratic function of ep and 7.. The dependence
of AE, i on the size of an island L is determined by the
scaling properties of the equilibrium equations of elasticity
theory [17],

AE« = —fi(po)AeoL —fz(po)ep7L
( L

f3(pQ) —L ln (2)(2~a
where the coefficients fi, fz, f3, . . . , depend only on the

(3)

where u; (r) is the contribution of the lattice mismatch to(l)

the elastic displacement field. The first term in Eq. (3) is
the interaction term of two strain fields, due to the lattice
mismatch on the one hand and to the surface stress discon-
tinuity on the other hand. The second term in Eq. (3) is
the renormalization of the surface energy of island facets
due to the change of the lattice parameter on the facets,
and the third term is the similar renormalization term for
the fiat surface. All three terms of Eq. (3) are propor-
tional to i . It will be shown below that the quantity

fz(cpu)7—.eoL is very important for the possibility of
ordering of three-dimensional islands, because it can re-
duce significantly the surface energy of island facets. The
term f2(yo) T—epL will be called, for convenience, the
mismatch-induced renormalization of the surface energy
of island facets.

The third term in Eq. (2) is the contribution of the edges
(2)

to the elastic relaxation energy AE, i . We consider is-
lands of size larger than the critical one, the first term

in Eq. (2) being the dominant contribution to AE, &. For
such islands, the square-based pyramid is energetically
more favorable than the elongated prism, i.e., the "quan-
tum dot" is more favorable than the "quantum wire, " be-
cause it provides larger elastic relaxation [18].

For a dilute system of islands, the elastic interaction be-
tween islands via the strained substrate may be neglected.
Then, substituting b, E« from Eq. (2) into Eq. (1), sum-

ming contributions of identical pyramid-shaped islands,
one gets the energy of the dilute system of islands per
unit surface area as follows:

( ) s 'p ( ) f (p ) 9f4('po)i i2
r'f3(eO)

ln
AL2 k 2' a

(4)

domains where the minimum of the strain energy corre-
sponds to a periodic domain structure [6,7,9,19,20]. In
the approximation of small tilt angle of facets pp, the sum

(i)of the energy per unit surface area AE, i for isolated is-
lands and of the interaction energy per unit surface area

E;«« is AE, ~
+ E;„«, = (Qa)Repro X [ g (q)]. Here(l)

A = (c» + 2ci2) (c» —ci2) cii (c» + ciz) ', q is the
fraction of the surface covered by islands, and the func-
tions —g, (q) for different arrays of islands are displayed
in Fig. 1.

Here the first term is the contribution of the lattice
(l)mismatch to the elastic relaxation energy AE, ~

. The
second term is the renormalized surface energy of the
island. The third term is the short-range energy of island
edges, g being the characteristic energy per unit length of
the edge. The last term, which is the contribution of the

edges to the elastic relaxation energy, AE, ~

— L lnL, —(2) —2

always has a minimum as a function of L.
For a dense system of islands, elastic interaction be-

tween islands via the strained substrate becomes essential.
The system of interacting islands is then a system of stress
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Among different 2D arrays of pyramid-shaped islands
on the (001) surface of an elastically anisotropic cubic
medium, the minimum energy corresponds to a 2D square
lattice of islands with primitive lattice vectors along the
"soft" directions [100] and [010]. There exist two factors
that favor the square lattice. First is the cubic anisotropy
of elastic moduli of the medium, and second is the square
shape of the base of a single island.

The approximation of small tilt angles used in deriving
(&)

b,E,i + E;„„,in Fig. 1 gives significant elastic relaxation
energy already for small pp, in agreement with Ref. [16].
For large values of po, this approximation overestimates
the elastic relaxation energy (it yields —64% of the strain
energy of a fiat film for pp = 45 ). Calculations by
the finite element method for po = 45 show basically
similar results to those of Fig. 1 [18]. First, the elastic
relaxation energy is more efficient for pyramids, where it
equals —60% of the strain energy of a Oat film, than for
elongated prisms, where it is —45%. Second, the cubic
anisotropy of elastic moduli also favors in this case a
2D square lattice of islands with primitive lattice vectors
along the "soft" directions [100] and [010].

The main part of the interaction energy is the energy of
dipole-dipole elastic repulsion between islands, E
(Qa)6cotppf5(po)Aepq ~ . Thus the curve —g2(q) in

Fig. 1 in the region 0 ~ q ~ 0.5 can be approximated
by —g2(q) = —2.87 + 0.61q i with the accuracy 0.01.
To express q in terms of Q and L, we equate the volume
of the pyramid and the volume of the initially uniform
film per unit period D X D of the square lattice,
(1/6)L3 tango = D (Qa). Hence, q = L2/D = 6Qa X
cotpo/L. Now, adding E;„„,—q3~2 —L 3i2 to the
energy of Eq. (4), we get the energy of the array of inter-
acting islands. To consider in detail I.-dependent terms
in the energy per unit area E(L) = Ed;i«, (L) + E;„„,(L),
we introduce the characteristic length

Lp = 2vra X exp + —, (5)
f4(pp) rI A 1

f3 gor2 2
and the characteristic energy per unit area, Eo =
(Qa)3cotpof3(pp)v A Lo . Then the sum of all L
dependent terms in E(L) may be written as a function of
the dimensionless length L/Lp,

I.o )' e'/'I. )
E(L) = Ep —2 —

I
lnL) Lp

4P (Ln)
~ 2a

(Lo)

This function is governed by two control parameters,

e'/'Wl. ,~ = [r(Vo) secWo —
7 (0) f2(Wo)reo] x

f3(~)~' '

(7a)

fs(pro) (6cotpo) (A o) Lo
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Here o. is the ratio of the renormalized surface energy
and of the contribution of edges to the elastic relaxation

energy ~AE, i ~. As noted above, y(pp) secpp —y(0) )(2)

0. However, due to mismatch-induced renormalization
of the surface energy of island facets, f2—(pp)rap, the
parameter n can be of either sign Th. e parameter P is

the ratio E;„«,/~AE, i ~; it increases with the amount of(2)

the deposited material as Q3i2.
Searching the minima of the energy E(L) from Eq. (6)

for different n and P, we obtain the phase diagram of
Fig. 2. For the region 1 of the phase diagram, there exists
an optimum size of islands L,pt, corresponding to the
absolute minimum of the energy, minE(L) —= E(L,z, ) (
0. On the other hand, the ripening of islands would
correspond to L ~ ~ where the energy E(L) ~ 0. It
means that the 2D periodic square lattice of islands of the
optimum size L,&t is a stable array, and islands do not
undergo ripening. For region 2 of the phase diagram, there
exists only a local minimum of the energy, corresponding
to a metastable array where E(L') ) 0. For region 3, the
local minimum in the energy E(L) disappears. In both
regions 2 and 3, there exists the thermodynamic tendency
to ripening. If the system initially corresponds to the
region 1, and the amount of the deposited material Q
increases, then the point in the phase diagram moves to
regions 2 and 3, and islands undergo ripening.

If u ~ 0, there exists an absolute minimum of the
energy E(L) for an arbitrary value of P, and minE =
E(L,z, ) ~ 0. Besides the absolute minimum of E(L),
there may also exist a local minimum at I = L', the
energy of a corresponding metastable state E(L') ( 0 in
region 4; E(L') ) 0 in region 5; and no metastable state
exists in region 6.

To estimate characteristic values of n and P, we substi-
tute r = 100 meV/A. , A = 500 meV/A, Lp = 100 A,
and a = 2.8 A. in Eq. (7b). This gives P = 1 for ~ep~ =
1% and Q = 0.5 monolayers. Therefore, if n ~ 0, the
array of islands may correspond to region 1 of the phase

1.0 (X0 (X

FIG. 2. Schematic phase diagram of the stability of square
lattice of coherent strained islands in the plane of control
parameters n —P. Here n and P are defined in Eqs. (7a)
and (7b). In regions 1, 4, 5, and 6, there exist stable arrays
of islands that do not undergo ripening. In regions 2 and 3,
all arrays of islands undergo ripening. uo = 2e '/ = 1.213;
Po = (4/3)e 'i = 1.038.
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diagram only for low coverage Q. On the other hand,
the typical difference in the surface energy between facets
of different orientation is of the order of =5—10 meV/Az
[21]. It follows then from Eq. (7a) that the parameter ct

for a strongly mismatched system may become negative
due to mismatch-induced renormalization of the surface
energy of island facets. If o. ~ 0, then the increase of
leal, e'.g. , by the increase of x for the heterophase system
In, Gai, As/GaAs(001), results in the decrease of L,z, .
This agrees with the experimental data of Ref. [14].

Comparing our theory with experimental data on the
InAs/GaAs(001) system of Ref. [14], we outline that the
molecular beam epitaxy (MBE) growth of 4 monolayers
of InAs for T = 480 C and As pressure (1.5 —3) X
10 6 torr results in an array of 140 A pyramid-shaped
quantum dots arranged in a 2D square lattice with

principal axes along the [100] and [010] directions. This
array is stable and does not undergo ripening upon growth
interruption.

Significant changes of MBE growth conditions (T =
480 C and PA, = 10 torr) lead to a ripening regime,
which results in formation of large macroscopic islands.
This indicates that kinetics is sufficient to drive the system
to a state with lower energy, i.e., to a stable array for
the ordering regime or to macroscopic clusters for the
ripening regime. The shift from the ordering regime to
the ripening regime may be caused by the As pressure-
induced change of the surface reconstruction [22].

We emphasize that our conclusions do not depend on
approximations made while deriving Eq. (4). For more
detailed treatment, first, the above omitted entropy term in
the free energy will lead to a finite concentration of the
residual gas of adatoms on the surface and to a reduction
of the total amount of material assembled in islands.
Second, if the surface energy 7 (m) does not have cusped
local minima, then the tilt angle of facets p will vary with
the size of the island. Neither of these effects prevents
the possibility of formation of periodic arrays of coherent
strained islands that do not undergo ripening upon growth
interruption.

To conclude, we have shown that coherent strained
essentially three-dimensional islands on a lattice-
mismatched substrate form, under certain conditions,
stable periodic arrays of equal-sized islands. For islands
on the (001) surface of a cubic crystal, the arrangement in

the 2D periodic square lattice with primitive lattice vectors
oriented along the lowest-stiffness directions [100] and

[010] is energetically preferred.
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