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Model for Plane Turbulent Couette Flow
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Combining the Reynolds equations with the difference-quotient turbulence model a simple analytical
theory of plane turbulent Couette How has been obtained. In a very natural manner an order parameter
of turbulence appears, which is related to the production rate of turbulent kinetic energy in the whole
domain. Good agreement with experimental data has been achieved.

PACS numbers: 47.27.Eq

Plane Couette flow occurs in a quid between two plane
parallel plates which are rectilinearly sheared. The Row
can be obtained in two different ways, for example, by
keeping one plate at rest and moving the second with
a constant velocity U [Fig. 1(a)] and by movement of
the plates in opposite directions with velocities ~U/2 in
reference to a laboratory system [Fig. 1(b)].

Laminar plane Couette flow yields the basis to explain
Newton's friction law. This fundamental law of fluid dy-
namics is based on knowledge of a linear velocity profile
occurring between adjacent layers as observed in Aows
dominated by viscous forces [Fig. 1(a)]. In turbulent
states the mean flow profiles are of S shape [Fig. 1(b)].
Because plane Couette How is very difficult to achieve
experimentally relatively few experiments have been per-
formed to study this flow type. For example, measure-
ments have been reported by Reichhardt (see Refs. [1,2]),
Robertson and Johnson [3],Aydin and Leutheusser [4], El
Telbany and Reynolds [5], and recently by Bech et al. [6].

On the other hand, Couette flow probably is the most
simple fundamental problem of turbulence, and therefore
it is extremely valuable for a theoretical understanding of
turbulent phenomena. Since von Karman has pointed out
its importance it has intrigued a number of researchers
such as Kampe de Feriet, Heisenberg, Burger, and Mitch-
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ner, and Diessler and Fox (see Ref. [3)). These scien-
tists were mainly motivated to work on Couette How by
the desire to understand homogenous turbulence. As we
will show in the remainder of this Letter the production
of turbulent kinetic energy —for finite Reynolds number
How —is nonzero and approximately constant over a large
domain symmetrical to the center line between the two
plane parallel plates. This leads to a homogenous tur-
bulence field, which on the other hand —because of the
mean shear flow —is nonisotropic. Therefore the results
are quite different from those of plane turbulent Poiseuille
flow, where the production even vanishes on the center
line [7]. Nowadays by numerical simulations inherent
structures of turbulence in Couette Rows at modest and
high Reynolds numbers can be studied more easily, e.g. ,

large-scale structures, wall streaks, etc. (see Refs. [8,9]).
We begin our theoretical treatment by considering the

Reynolds equations, which are presented in many text-
books on turbulence, e.g. , in Ref. [10]. They are ap-
plied to the plane turbulent Couette flow problem showing
a vanishing downstream pressure gradient. Furthermore,
the dimensionless functions
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FIG. 1. Plane turbulent Couette flow between two rectilinearly sheared plates. The mean velocity profile of laminar flow (a) and
l

turbulent flow (b) are shown in two different reference systems with a dimensionless mass flow equal to 2 (a) and a vanishing
mean mass flow in case (b).
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FIG. 2. Functional relation between the parameters n and P, which was calculated by Eq. (12) [see (a)]. On the right the order
parameter occurring, y = P/4, is compared with experimental results from Ref. [2].

are taken into consideration. The quantity a denotes the
half-width between the plane parallel plates. ft is the di-
mensionless velocity parallel to the inner surface of the
plates and f& t the Reynolds shear stress. In boundary-
layer theories it is customary to define the characteristic
velocity (ro denotes the boundary shear stress)

u' = ~() p, Re' = au* v,

Re=aut /v, ut = U, (2)
which allows the definition of two different Reynolds
numbers Re* and Re. After some calculations one obtains
the following equation (see Ref. [11]):

1 Bft(r), Re*)
Re* 8 r]

—fz t (r), Re") —A(Re*) r)

—B(Re*) = 0. (3)
The no-slip boundary condition is

f~(—1, Re*) = 0, f~(+I, Re*) = ut, /u*. (4)
Furthermore, turbulent motion vanishes at the boundary
by hindrance

fz t( —1, Re*) = f2 t(+I, Re*) = 0.
By studying Eq. (3) at the boundaries one obtains 1 ~
A —8 = 0. After substituting the solutions of this
equation A = 0 and 8 = 1 we obtain

1 r)ft(r), Re*)
Re*

Eight years ago the difference-quotient turbulence
model was developed (see Refs. [12,13]). It can be
shown that this alternative closure corresponds to eddies
with an infinite number of different scales. Furthermore,
it relates to the turbulent kinetic energy of this infinite
set. Compared with the Kolmogorov-Obukhov model
(KOM) [14] it contains some interesting generalizations
which are essential for the description of nonisotropic
turbulent shear Aows. The length scales are functions
of space coordinates whereas in the KOM length scales
vary only from one generation of eddies to the next but
show no further dependence on the position in the Bow.
Furthermore, the difference-quotient turbulence model
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FIG. 3. Time-averaged velocity profiles for different turbulence intensities. The limiting cases of laminar How and infinite
Reynolds number flow are presented by thicker solid lines (a). In the second figure (b) as an example a comparison with
experimental results from Ref. [2] is shown.
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~gt(n) + Pgt(n) —Pgt(n)' —1 = o,

gt( —1) = o, gt(I) = 1 (10)

The result for the mean flow profile can be obtained by
elementary techniques

1 4 —P i 4 —P)
gt(n) = —1+

)
tan arctan 7j l

(11)
To obtain Eq. (11) the following function, which follows
from the requirements (10), was substituted into the

1.2
a)

not only refers to the turbulent kinetic energy contained
in all the "scales" (Taylor*s energy spectrum), but it
additionally is composed of interaction energies between
eddies of different "diameters. " Probably the most
compact mathematical description of the proposed closure
is the following difference-quotient representation:

u2u'I(xt, xp) = —0./2[ut(xt, x2) —ut (xt)]

X '" . (7)
ut (xt) ut (xt, x2)

X2 X2

The characteristic length of the flow problem g2 perpen-
dicular to the main flow direction is a —x2. The "mixing
length" is chosen to be equivalent to the distance from the
driving wall. The quantity x2 denotes the space coor-
dinate, where ui takes its maximum or supremum as a
function of the variable x2 and therefore is equal to a.
Then we simply obtain

u2ut (xl t x2) tT[u1 (xl ~ x2) ul (xl t I)]
&& [ut(xt, + 1) —ut(xt, x2)], (8)

which fulfills all the desired invariance and symmetry
requirements. With the following definitions:

gt(n) = ft(n)/ft(1), g2, t(n) = f2, I(n),
cr = ft(1)/Re ~ P = trft(I) ~

a differential equation and two boundary conditions are
obtained

general solution of problem (10):

(4 —P)/P 2 arctan (4 —p)/p p . (12)

The inverse function p(n) is shown in Fig. 2(a). After
some calculations one can show that

arctanQ~/( I —g) 1Re* = v~' (13a)

Re,
Re arctanQy/(I —g)

' 4 ' (13b)

p~4»cr~0,
1

gt ~ —[H(1 —rI) + H(g + 1)] point-wise for
2

(14b)

where H describes a Heaviside distribution in S. There-
fore the derivative of the mean flow profile consists of
two delta distributions at the positions of the two shearing
plates. Substituting Eq. (11) into the dimensionless form
of Eq. (8) one obtains

g2, t
= Pgt(I gt)

|4- p&1— tan

]..2

X arctan
4 —p i

where an order parameter y of turbulence has been
introduced. Equation (13b) is shown in Fig. 2(b).

The mean flow profiles calculated with Eq. (11) are
shown in Fig. 3(a) and a comparison with experimental
results can be seen in Fig. 3(b). The point-wise limits of
the flow profiles for i g i

( 1 are

P ~0» n~2,
1

gt —(1 + rj) point-wise for igi ( 1, (14a)
2
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FIG. 4. Reynolds shear stress for different order parameters P. Limiting cases of laminar and infinite Reynolds number flow are
shown by thicker solid lines (a) and in (b) a comparison of analytical calculations with latest simulations results [15] are shown.
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FIG. 5. In (a) the calculated mean shear S is compared with experimental results from Refs. [2,5]. The production rate of
turbulent kinetic energy P is shown in (b) on the right. In some cases this quantity is approximately constant in broad domains
symmetrical to the center line. Note that when P tends towards 4, the production of turbulent kinetic energy P converges towards
two delta distributions at the positions of the bounding plates.

P = gz i dgt jdri, (17)

which can easily be calculated by combining the deriva-
tive of Eq. (11) with (15b). From Eqs. (11), (15a), and
(17), however, we conclude directly that

+1 +1 pPdrl = p (gi gl)dgl = (18)
—1 0 6

The parameter P is proportional to the production of
turbulent kinetic energy in the entire domain per unit
length in the downstream direction. Therefore it is a
very meaningful property, with all the desired features
of an order parameter (characterizing turbulence). This
is not very surprising as turbulent fields are composed
of two "phases, " namely, laminar patches separated from
turbulent regions by fractal boundaries. With increasing
Reynolds number the laminar regions become smaller
and less until they completely vanish, and in the infinite
Reynolds number limit —in a statistical sense —again a
higher degree of symmetry is obtained [16].

The results of Poiseuille and Couette How show striking
analogies to the theory of critical phenomena. Most
experiments on Couette How which have been reported
in the past are related to Reynolds numbers between

the Reynolds shear stress which is shown in Fig. 4(a).
Note that in Fig. 4(b) p = 3.96 has been determined with
Eq. (13b). In addition, with this value very good agree-
ment between the measured and calculated mean veloc-
ity profiles has been obtained. Therefore the comparison
shown in Fig. 4(b) is a very reliable test of the perfor-
mance of the turbulence model under consideration.

The mean shear S is defined by

S=2 4 —p & parctan . (16)
drl „=p P k4 p)

This is shown in Fig. 5(a). The production of the
turbulent kinetic energy, referring to Ref. [10],is [see also
Fig. 5(b)]

3000 and 35000. For this domain the order parameter
varies in the range 3.8 to 4.0. Therefore our results give
evidence that —at least from a disorder or order point
of view —many more experiments should be performed
with Reynolds numbers only slightly above criticality
(650 ( Re ( 3000). Then the presented theory could be
tested much more thoroughly.

For helpful remarks we are thankful to J. Glas and
A. Rosenheck

[1] H. Reichhardt, Z. Angew. Math. Mech. 36, 26 (1956).
[2] H. Reichhardt, Gesetzmassigkeiten der Geradlinigen Tur

bulenten Couette Stromun-g (Mitteilungen aus dern Max-
Planck-Institut fiir Stromungsforschung und der Aerody-
namischem Versuchsanstalt, Gottingen, 1959).

[3] J.M. Roberston and H. F. Johnson, J. Eng. Mech. Div. 6,
1171 (1970).

[4] E.M. Aydin and H. J. Leutheusser, Exp. Fluids Eng. 11,
302 (1991).

[5] M. M. M. El Telbany and A. J. Reynolds, J. Fluids Eng.
104, 367 (1982).

[6] K. H. Bech, N. Tillmark, P. H. Alfedsson, and H. I.
Andersson, J. Fluid Mech. 286, 291 (1995).

[7] P. W. Egolf and D. A. Weiss, Helv. Phys. Acta 68, 215
(1995).

[8] A. J. Reynolds and K. Wieghardt, J. Fluid Mech. 287, 75
(1995).

[9] J.M. Hamilton, J. Kim, and F. Waleffe, J. Fluid Mech.
287, 317 (1995).

[10] J.O. Hinze, Turbulence (McGraw-Hill, New York, 1975),
2nd ed. , Chap. l.

[11] S. I. Pai, J. Appl. Mech. 20, 109 (1953).
[12] P.W. Egolf, Helv. Phys. Acta 64, 944 (1991).
[13] P. W. Egolf, Phys. Rev. E 49, 1260 (1994).
[14] A. N. Kolmogorov, Dokl. Acad. Sci. URSS 30, 301 (1941).
[15] M. J. Lee and J. Kim, Proceedings of the Eighth Sym

posium on Turbulent Shear Flows (Technical University,
Munich, 1991).

[16] U. Friscb, Proc. R. Soc. London A 434, 89 (1991).

2959


