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Controlling Chaos using Differential Geometric Method
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We present an effective approach for controlling chaos by using a differential geometric method. It
has been shown that the proposed method can control chaotic motion not only to a steady state but
also to any desired periodic orbit. The main characteristic of the method is to algebraically transform a
nonlinear dynamics into a linear one, so that linear control techniques can be applied. To demonstrate
the feasibility of our proposed method, a Lorenz system under different designed requirements is
illustrated.

PACS numbers: 05.45.+b

Chaotic behavior occurs in many mechanical or elec-
tric oscillators, in rotating or heated Auids, in chemical
reactions, in laser cavities, etc. However, these irregular
and complex phenomena are often undesirable. In many
practical situations, in order to improve system perfor-
mance or avoid fatigue failures of mechanical systems,
we must control a chaotic system to a periodic orbit or
a steady state, but particularly the last one. Therefore how
to control chaotic systems has received increased attention
[1—12]. The pioneers Ott, Grebogi, and Yorke (OGY)
proposed an efficient method to achieve this control in
which only a small time-dependent perturbation is made
on one of the accessible system parameters [1]. Modified
methods and other approaches are presented continuously
[2—12]. The OGY method can convert chaotic motion to
one of a large number of unstable periodic orbits embedded
within a strange attractor. With delay coordinate embed-
ding, the OGY method is applicable to experimental situa-
tions in which a priori analytical knowledge of the system
dynamics is not available. Nevertheless, the application of
the OGY method is limited due to the measurement errors.
In the chaotic state of a nonlinear dynamic system this er-
ror is amplified exponentially with time such that the tra-
jectory may not be predicted with the precision necessary
for the OGY method. For this reason Hubinger, Doerner,
and Martienssen [5] proposed an alternative method which
allows a "nearly" continuous "local" control by adjusting
of the control parameter concurrently. However, for some
systems which are perturbed by the environment or other
factors, the above two methods fail.

In addition to the above methods, some researchers
[6,7] applied a periodic external force to eliminate chaos
in a dynamic system. Similarly, those approaches can
change a strange attractor to a periodic orbit but not a
steady state. To solve this problem, the occasional feed-
back technique or conventional linear feedback methods
are feasible approaches [8—12]. But the closed-loop sys-
tem is still nonlinear and the feedback gains must be trial
and error. Otherwise, dynamic analysis of the closed-
loop system is necessary; this is time consuming and may

x = Ax + BP '(x) [u —n(x)].

If the nonlinear state equation does not have the structure
of (1), this does not mean that we cannot linearize the
system via feedback. In this paper we present the basic
principles of a differential geometric method and their
applications in controlling chaos. This method can relax
the match condition that nonlinear systems must have the
structure of equation (1) [15]. By using this approach,
we can control a chaotic system to any desired steady
state or arbitrary periodic orbit; furthermore, the transient
response of the controlled system can be designed to
satisfy the performance requirement.

First, let S& and S2 be two systems defined, respec-
tively, by

x = f(x, u) (2)

and

We say that S~ is related to S2 if there is
a C diffeomorphism T: R"+' ~ R"+' with
T~(x, u) = yt, . . . , T„(x,u) = y„, and T„+~(x,u) = v
such that for every state-control trajectory (x(t), u(t))

be impractical due to the difficulty of obtaining an exact
physical model.

Another possible method to control chaos is feedback
linearization [13,14]. The idea of the approach is to
algebraically transform a nonlinear system dynamics into
a linear one, so that linear control techniques can be
applied. This differs from conventional linearization (i.e.,
Jacobian linearization) in that feedback linearization is
achieved by exact state transformations and feedback,
rather than by linear approximations of the dynamics.
The ability to use feedback to transform a nonlinear
system into a controllable linear system by canceling
nonlinearities requires the nonlinear system to have the
structure
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of S~ we have the corresponding T~ (t), . . . , T (&), T, + &

satisfying Eq. (3), namely,

T) = g)(T), . . . , T„,T„+)),

T„= g„(T), . . . , T„,T„+)).

In other words, (T~(r), . . . , T„(t),T„+~(t)) is a state-
control trajectory of S2. The set of such transformations is
denoted by 2, and it also can be said that S& is X equiv-
alent to Sz. Our interest is in the 2 -equivalence class of
systems which contains controllable linear systems. Su
[15] showed that every controllable linear system is 2
equivalent to the systems

y.-i
yn

y2

yn
0

0
0+ 0 P . (4)

There is a transformation T for the given system

x = f(x) + g(x)@(x,u)

in Sp such that

(dT;, f + g@) = T;+~, i = l, . . . , n,

and

where dT; denotes the gradient of T; and (dT, , f) is a
scalar field defined by

Ti l9 T'
(dT f) = 'fi +. + 'f. .

Bxi Bxn

Since T], . . . , T„are independent of u, we conclude that

(dT;, g) = 0,
(dT;, f) = T;+t, i = l, . . . , n —1,

Xi
x2
x3

Px) + PX2
xi —x2 —Cpx3 —x)x3 +

Co(xf + x2) x3 + xtx2

0
0 u,

(5)

and the new uncontrolled system has three unstable
equilibrium points (0,0,0), (—Co, Cp, 1 Ro), and

( 2Co, 2Co, 0), where the point (x~, x2, x3) = (0, 0, 0)
is the target state. According to the previous descriptions,
it can be verified that system (5) is 2 equivalent to
system (4). The desired transformation can be obtained
as

Ti = x&,

T2 = Px 1 + PX2,

T3 = (p + p) (x~ —x2) —pCox3 pxfx3,

T4 = v = (dT3, f) + (dT3, g)u,

control parameter. The physical meaning of the variables
(x, y, z) can be seen in Ref. [16]. If Ro = 28, the uncon-
trolled system (i.e., u = 0) is chaotic and there are three
unstable equilibrium points (Cn, Co, 1), (0, 0, Rp), and

( Cp, Co, 1), where Cn = QRO —1. If the state
(x, y, z) = (Co, Cp, —1) is our set point, from the state
space it is easy to observe that the strange attractor of
the Lorenz system does not include the desired equilib-
rium point. Also, it is undefined in the Poincare map for
this point. Therefore the OGY method is not applicable
in this case.

We now use the differential geometric method to
control the Lorenz system. First, let us define a new set of
dependent variables (x~t,tx2, x3) = (x —Cp, y

—Co, z +
1); then the system can be rewritten as

(dT„,f + gf) = (dT„,f) + (dT„,g)$ = T„+) = v.

Up to the present, many efficient identification meth-
ods for nonlinear systems [18,19] have been proposed that
support the feasibility of our method. Moreover, in prac-
tical applications, our proposed method allows parametric
variations and the existence of high frequency unmodeled
structures. In order to show the feasibility of our pro-
posed method in this paper, let us consider a Lorenz sys-
tem [16,17] which can be described by

x = px + py,

y = —xz —y,
z=xy —z —R,

where R = Rp + u is the Rayleigh number, Rp is our op-
eration value, p = 10 is the Prandtl number, and u is the

where

(de, f) —= q(x) = (p + p —px3) (—pxt+ px2)
—(p + p) (xt —xp —Cnx3 —xtx3)x2

(pCo+ pxt) (Coxt + COX2 x3 + x)x2),

(dT3, g) =—s(x) = p (xt + Cp) .

If we apply the linear feedback control v = —Ey =
—1000y& —215y2 —17.5y3 such that all eigenvalues of
the system have negative real parts, then y = 0 (or equiv-
alently x = 0) is an asymptotically stable equilibrium
point of the linear system. The schematic diagram of the
feedback control system is shown in Fig. 1. Since

q(x) v
u = — +

s(x) s(x)
'
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FIG. 1. Schematic description of the feedback control system.
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to avoid s(x) being singular and to limit the control
energy, let the controller begin to work when s(x) )
0 and the range in which we are allowed to vary u

be —R ( u ( R ~ Ro, where R is an appropriate
positive number. Notice that, in the previous descriptions,
it is assumed that everything on a Euclidean space
is defined in the neighborhood of the origin. But, in
practical situations, such a linearized method usually
holds not only in the neighborhood of the origin. For
example, in the Lorenz system described above, the
linearization is valid when s(x) ) 0 (or xt ) Cp).
Thus any initial state within the range can be controlled
to another one of the same range under energy limitation.

In the following, several numerical examples under
different situations are illustrated. First, we take R
Rp. The simulated result is shown in Fig. 2. [In Figs. 2—
5, the controller has been switched on at a nondimensional
time t = 25. The upper trace is the response of R; the
lower one is the system output x(t).] Since the closed-
loop system is linear, the system response is optimal due
to the feedback control. As was expected, the control
signal u is near zero (or equivalently R = Rp) when the
transient response of the system comes into the desired
steady state. We stress that larger control energy is
inevitable in the beginning (no matter what controller
we use); this is because the initial state is far from
the desired one. Because the large control energy is
allowable, our method can immediately converge a large
error to zero instead of waiting for the actual state to reach
the neighborhood of the desired state, and the robustness
is enhanced. Next, we consider the effect of measurement
noise. We add the independent noise e 6&, e 62, and e 63
to the measurements x&, x2, and x3, respectively. The
random noises Bi, 62, and 63 are normally distributed,
and have mean value 0 and variance 0.5. Figure 3 shows
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FIG. 3. Time responses of the Lorenz system with two
different levels of noise. (a) e = 0.05. (b) e = 0.01.

60

the results of the stabilization of the unstable equilibrium
point (x, y, z) = (Cp, Cp, —1) of the Lorenz system for
two different levels of noise. The increase in noise leads
to the increase of the amplitude of perturbation but not
to occasional bursts of the system into the region far from
the desired state. If we further reduce the allowable varied
range of u, i.e., decrease the value of R to 5.0, the result
is given in Fig. 4 before controlling and after controlling.
Because of the limitation of control energy, the system
response has transient oscillation after controlling, but the
steady response keeps zero error all the same. In practical
applications, the system may be perturbed by parametric
uncertainty or process noise. To consider this situation,
besides the measurement noise, we let the Prandtl number
vary randomly in the interval [8.0, 12.0] and add terms
e'6&, e'Bz, and e'Bs to the right-hand sides of Eq. (6),
in which we let e' = 4.0. The controller is designed
according to the nominal system (p = 10). The result
of the numerical simulation is depicted in Fig. 5. It
shows that the steady response is hardly affected by the
perturbations. Notice, that for such a noisy situation the
OGY method and many other approaches are not feasible.

In addition to stabilizing an unstable equilibrium point,
if we let the reference input r(t) be a desired periodic
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FIG. 2. Time responses of the Lorenz system without noise.

FIG. 4. Time responses of the Lorenz system where the
allowable varied range of u is decreased (i.e., the value of R
is reduced to 5.0).
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FKJ. 5. Time response of the Lorenz system with parametric
uncertainty and process noise.
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FIG. 6. Results of tracking different periodic orbits. (a)
Period 1. (b) Period 3.

signal, the system output will track the reference orbit.
The results of tracking different periodic orbits are shown
in Fig. 6.

In conclusion, an approach by using a differential
geometric method to control chaos has been presented.
It has been shown that the proposed method can control
chaotic motion not only to an equilibrium point but
also to any desired periodic orbit. A Lorenz system
demonstrating the feasibility of our proposed method has
been illustrated. Some advantages of this method are
the following. (1) The control strategy of our proposed
method is easier to implement; (2) it can perform jobs
automatically after being designed and implemented and
can stabilize the overall control system efficiently; (3)

only nominal systems have to be known (identified) in
advance (in practice, allowing the existence of parameter
uncertainty and high-frequency unmodeled dynamics); (4)
the reference input can be any steady state or arbitrary
periodic orbit even outside the strange attractor; (5) the
dynamic characteristics of controlled systems are linear
and their transient responses can be set according to
the requirements of designers; (6) the control force is
very small (i.e., the required parameter perturbation is
small) when the system response is close to the designed
trajectory; (7) control can be achieved even with large
noise or bounded control energy; (8) the converging speed
of error is very fast; and (9) the larger the allowable
control energy, the more robust the controlled system.
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