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Semiclassical Quantization of Intermittency in Helium
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We develop a new method to include intermittency into the periodic orbit description of a dynamical
system. The technique allows removal of typical singularities in classical and semiclassical zeta
functions caused by the coexistence of regular and chaotic dynamics. Approximate quantum numbers
are derived from the regular dynamics, which provide a natural connection between periodic orbit theory
and the semiclassical quantization of integrable systems. Interference effects and level repulsion in the
quantum spectrum are resolved by including the classical chaotic dynamics in a perturbation expansion.
Results are given for the Rydberg series structures in S helium.

PACS numbers: 32.30.3c, 03.65.Sq, 05.45.+b

The increasing understanding of low dimensional chaos
has led to a variety of new concepts to characterize
dynamical systems through average quantities based on
the principles of thermodynamics [1]. Closed expressions
for the phase space averages can be given in terms of the
set of all periodic orbits, which is densely embedded in
the dynamical Row for generic systems [2]. Semiclassical
approximations for quantum operators can be derived
in the form of periodic orbit expressions [3—5] starting
directly from Schrodinger's equation. The formulas of the
thermodynamical formalism and the semiclassical theory
have the same form and make use of the same classical
information, suggesting a common theoretical basis [6].
Periodic orbit theories, however, suffer from a fundamental
problem: The number of orbits increase exponentially with
their period, and convergent resummation techniques could
up to now only be given for systems close to uniform
hyperbolicity, where exponential separation of trajectories
occurs at approximately the same rate everywhere in
phase space. The extension of these techniques to the
generic case of Hamiltonian Bows with stable islands and
marginally stable fixed points has not been possible so
far. Systems of this kind show the typical behavior of
intermittency; a generic trajectory on the outside of stable
islands alternates between regular motion near marginally
stable components and chaotic motion in other regions of
the phase space. The Lyapunov exponents of periodic
orbits that approach the regular regime tend to zero, thus
causing divergences in the periodic orbit formulas.

In this Letter, we present a method that is in princi-
ple capable of overcoming the problems mentioned above,
and apply it to the semiclassical quantization of collinear
helium. The dynamics of this system is not only inter-
esting on its own, but it contains important features of
the full three-body Coulomb problem helium. The first
semiclassical calculations of parts of the helium spectrum
could be carried out only recently on this model [7—9].

We start with a brief survey of the spectrum of 5 helium,
which is defined by taking the total angular momentum
L = 0 and neglecting spin-orbit coupling. The spectrum
consists of families of Rydberg series converging towards

the single particle breakup thresholds Etv = Z2/2N2-,
with Z = 2 for helium. (We use atomic units through-
out. ) Only the series below the N = 1 threshold cor-
responds to bound states; all other states are resonances
embedded in the continuum. The number of series with a
common threshold increases like N, and various approxi-
mate quantum numbers have been proposed to label this
structure [10,11]. All these classification schemes break
down in the large N limit (N ~ 10), where series towards
different thresholds overlap strongly and interference ef-
fects become dominant. Modern techniques allow for a
numerical calculation of the spectrum up to N = 10 by
direct diagonalization of the Hamilton operator in a large
basis set [12,13].

The classical dynamics of the three-body Coulomb
system for L = 0 is restricted to a plane, so the phase
space is six dimensional. The structure of the dynamics
is energy independent due to the scale invariance of
the equations of motion. Appropriate coordinates are
the electron-nucleus distances I.], r2, and the angle 0 =
Z (r~, rq). The lowest Rydberg series to each N threshold
is built up by eigenstates with expectation value (cos0) =
—1. These states correspond to the energetically favored
configuration of electrons localized on the opposite sides
of the nucleus. A semiclassical description of these series
follows from quantizing the corresponding near collinear
dynamics, which is dominated by the four-dimensional
invariant subspace 0 = ~, 0 = 0, a stable fixed plane of
the full dynamics. In this collinear subspace the classical
Hamiltonian has the form

P] P2 Z Z 1
2 2

+ +
2 2 I ] f'2 f'] + I"'2

The dynamic is invariant under the exchange r~ ~ r2,
and we restrict ourselves to the fundamental domain
r~ ~ rq The Hamiltonian (1) is .chaotic in the sense that
all periodic orbits are unstable. Furthermore, a symbolic
description exists that assigns a binary sequence to each
trajectory based on the following rules: 0 if the trajectory
does not hit the axis r ~

= r2 between two consecutive
events r~ = 0, 1 otherwise. Perturbations perpendicular
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to the collinear configuration correspond to stable bending
modes in the 0 coordinate. We refer to [14] for a detailed
discussion of the full classical problem.

Although the motion in the collinear plane is ergodic
and chaotic, nearly regular dynamics takes place when
one electron is far from the nucleus compared to the
other. The potential in (1) becomes separable in that limit,
i.e., V(r1, r2) = Z/r2 ——(Z —1)/r1 for r1 » rz, and
there exists a marginally stable orbit at r& = ~, p&

=
0. This orbit causes the intermittency in our system; a
typical trajectory alternates between chaotic behavior in
the region r~ = r2 and laminar motion out in the channel
r~ && r2. The classical system is unbounded, so sooner
or later almost all trajectories escape.

The starting point of our semiclassical approximation is
the Gutzwiller-Voros zeta function [15], which is a semi-
classical expression for the quantum spectral determinant
det(E —H). This zeta function can be derived from the
periodic orbit trace formula [3,4], and its leading term is
for scale invariant classical Hamiltonians of the form

(1 A esp(F)/h)
P

The product runs over single repeats of all periodic orbits.
The action S = P p dq is taken along the orbit and the
amplitude A„ includes both the winding number [16] and
the linear stability exponents. The semiclassical approxi-
mation to the quantum eigenvalues is given by the zeros
of the zeta function. The product representation (2) is,
however, absolutely convergent only for ImE & h, & 0,
so a suitable representation with larger analyticity domain
as provided by the cycle expansion [2] is preferable.
The product is expanded by multiplying out the single
factors and regrouping the terms in such a way that
maximal cancellations occur. The ordering procedure
makes intensive use of the self-similar structure of the
dynamics by exploiting a symbolic description of the
flow and grouping together orbits and pseudo-orbits into
contributions of increasing total symbol length [2].

The dynamics of collinear helium is strongly influenced
by the regular behavior in the rj » r2 regions. As a
consequence, the amplitudes in (2) drop off algebraically
and not exponentially with the code length for periodic
orbits with a long tail of 0 s. This is the typical behavior
for trajectories approaching a marginally stable fixed point
[17]. A straightforward application of a cycle expansion
as outlined above is useless, as the symbolic description
alone does not account for the laminar channel dynamics.
Orbits with the same symbol length and comparable
actions contribute very differently in amplitude depending
on their behavior in phase space. Cancellation effects in
the cycle expansion are therefore poor, and an analytic
continuation of the zeta function is no longer provided.

We now present a general method to deal with this
fundamental problem in periodic orbit theory. Following
Ref. [2], we separate the regular and chaotic contributions

by summing over the algebraic tails before regrouping
terms in a cycle expansion. This is done by a summation
over families of periodic orbits of the form c 0", with a
common head symbol string c and an increasing 0 tail.
The cycle expansion now has the form

(1 —
tt, ) = 1 —t1 —(t11 —t1t1)

p

[(t101 t1 tp1 ) + (t111 t11 tl )] (3)

(~) (~)+ so + s) n + .

(~) (~)o.,(n) =n+ bp + b1 n +

A, (n) =
3 inn + lp + l1 n +5 (~) (~)

(5)

(6)

The leading terms in (5)—(7) are universal, i.e. , indepen-
dent of the head string c, and can be obtained in the sepa-
rable limit r1 » r2 of the Hamiltonian (1) [8,18].

Making use of the identity g, 6(x —n) =
exp(2vrirx), we write the sums t, as

( )
t, (z, np)

2
dx e '"'t„(z, np + x),

(8)

where we introduced the notation t, (z, n) instead of t, p (z).
Fixing k = [Rez] —m in (4), the r = 0 integral in (8) is
the leading term of the expansion.

Before evaluating the full cycle expansion (3), we will
study the dominant g-dependent behavior of the zeta func-
tion by approximating the leading integral r = 0 by the
stationary phase. The stationary phase condition is

[zS,(x) —(k + —)x —(m + -)o, (x)] = 0 (9)

with t, (E) .= g„„t, p (E). The lower index np denotes
the length of the shortest 0 tail possible in the family. For
collinear helium, the weights t~ are given by

7T & tzsi ttk+ &/2&nt lm+]/2jo v f ~p/ (4)P

Here, we write the action as S„(E) = 27rz(E) 5„;the scal-

ing factor z = Z/RQ 2E con—tains all the energy depen-
dence. Furthermore, A~ denotes the stability exponent of
the periodic orbit in the plane, whereas the stability in-
dex o~ characterizes the stable dynamics perpendicular
to the plane. For collinear helium, the winding number of
the stable/unstable manifold in the plane equals twice the
code length n~ of the periodic orbit. The integer numberI = 0, 1, . . . , labels quantum excitations of the stable de-
gree of freedom in the harmonic oscillator approximation
[7]. The integer number k has no effect on the weight t„;
its meaning will become clear in what follows.

Various quantities introduced in (4) can be written as
smooth functions of the tail length n, with asymptotic
behavior given by

Z 2/3 3/2

s(n) =n 1+ ( n)
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for z real. The solutions xo(z) of Eq. (9) tend to infinity for
integer real z values, i.e., at the single ionization thresholds
E = —Z/2N, with N = k + m + 1. Approximating
the zeta function by its leading term only, i.e., g
1 —t, (z) (where t, denotes the family sum with smallest

coefficient Io ), the zeros of P provide a quantization
(c) —1

condition for the real parts of the energies,

zS(x,) —(k + —,)x, —(m + —,)~(x,) = I + —, , (10)

in terms of the integer quantum numbers N, l, m.
A close look reveals an interesting connection between

Eqs. (9) and (10) and the semiclassical Einstein-Brillouin-
Keller (EBK) quantization [3], a generalization of the
WKB approach for integrable systems with f degrees
of freedom. For such systems the classical Hamiltonian
can be written in the form H = H(J), with conserved
actions J and frequencies ~u = ctH/clJ. The manifold
J = const has the topology of an f-torus embedded in
the 2f-dimensional phase space. The EBK quantization
condition is then simply given by E„- = H[h(n + v/4)]
and the numbers v; are integers. The action of a trajectory
moving on a 3-torus after the time T = 27r/rut is given by

J(n, E) = Jt(n, E) + n J2(n, E) + n3(n) Js(u, E),
(11)

rotation [13]. The spectra deviate not more than 4%
with respect to the mean level spacing, except for the
helium ground state (N, l) = (1,0) and the energy region
around F = —0.130, where the Rydberg series N = 4 is
perturbed by the lowest resonance of the N = 5 states.
The good agreement for large l quantum numbers would
be completely destroyed choosing the usual harmonic
oscillator term 1/2 instead of I/8 in (10) and (13).
Note that there is no free parameter; the functions S(x)
and o.(x) are completely determined by (5) and (6) with
nonleading coefficients fixed by the periodic orbit data.

The QEBK treatment describes the gross structure of
the spectrum. Finer details such as perturbations due to
overlaps of different N Rydberg series causing level re-
pulsion are not resolved (see Table I at E = —0.130).
These effects are a manifestation of the strong violation
of the near integrability condition in the region close to
the nucleus. To include the chaotic dynamics in a sys-
tematic way we need to evaluate the full cycle expansion

TABLE I. Quantum energies of the bound Rydberg states
N = I and the resonance series N = 4 from [13]are compared
with semiclassical QEBK and cycle expansion calculations in
'5'=0 helium. The error e is given in percentage of the mean
level spacing.

with winding numbers n = cu2/rut and n3 rtp3/rut.
We assumed here a harmonic oscillator in the third degree
of freedom, i.e., 0.3 is constant for fixed J), J2, and arbitrary
J3. For the integrable system (11),the additional condition

BJ Bn3= J2 + J3
8cI 8 cl'

(12)

is valid for fixed energy. Equations (11) and (12) are
indeed equivalent to (10) and (9) if we set J = z5/x,
n = 1/x, and n3 = o./x and choose the quantization
conditions

Jt =k+1/2, J2 ——I + 1/8, J3 =m+ 1/2.
(13)

We identify J~, J2 with the motion of the inner, outer
electron, while J3 represents the stable degree of free-
dom. This procedure establishes a direct connection of
Gutzwiller's periodic orbit formula, valid only for isolated
periodic orbits, with the EBK quantization of integrable
systems. Furthermore, our derivation suggests a gener-
alization of the usual EBK approach to nearly integrable
dynamics. The nonintegrability enters here just through
the unusual term 1/8 in (13) and the nonleading terms in
the expansion of the action and winding number in (5)
and (6).

Results for our simple quantization condition (which
we call QEBK for quasi-EBK from now on) are listed
in Table I. We compare the energy eigenvalues deduced
from (9) and (10) with the real part of 5 helium resonances
obtained from full quantum calculations using complex

%=1
0
1

2
3
4
5
6
7
8
9

10
11
12

N=4
0
1

2
3
4
5
6
7
8

50
9

10
11
12

2.903721
2.145974
2.061272
2.033587
2.021177
2.014563
2.010626
2.008094
2.006370
2.005143
2.004239
2.003555
2.003023
2.0

0.200990
0.165734
0.150824
0.142602
0.137685
0.134551
0.132452
0.130999
0.129993
0.129323
0.128777
0.128262
0.127816
0.127446
0.125

QEBK

2.780992
2.149378
2.062035
2.033870
2.021313
2.014639
2.010672
2.008124
2.006391
2.005158
2.004251
2.003563
2.003030
2.0

0.201365
0.166631
0.151114
0.142676
0.137653
0.134464
0.132330
0.130839
0.129758

0.128951
0.128332
0.127848
0.127463
0.125

5.6
2. 1

1.8
1.6
1.6
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.4

0.6
3.8
2.4
1.1
0.8
3.3
6.8

12.5
24.5

25.6
13.1

7.7
4.8

Cyc Exp

2.928251
2.135623
2.059238
2.032887
2.020860
2.014394
2.010525
2.008029
2.006326
2.005112
2.004216
2.003537
2.003001
2.0

0.199970
0.165150
0.150382
0.142345
0.137616
0.134569
0.132501
0.131066
0.130042
0.129298
0.128735
0.128237
0.127795
0.127428
0.125

1.0
6.9
4.9
4. 1

3.7
3.4
3.3
3.2
3.1

3.0
3.0
2.9
2.9

1.7
2.5
3.8
4.0
1.7
0.7
2.7
5.0
4.8
4.2
6.4
4.8
5.0
5.3
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in (3). The motion in the region ri = r2 is resolved in
ever finer detail by taking families with increasing head
string length into account. Note, however, that the sums
t, and also the integral representation (8) are divergent
for Imp ( 0 due to the algebraic decay of the ampli-
tudes. This is the basic problem of periodic orbit formu-

las in the presence of marginally stable behavior. In the
periodic orbit family picture, these divergences can now
be removed step by step. An analytic continuation for
the sum t, follows from rotating the line of integration
for each r integral in (8) onto the imaginary axis to ob-
tain the compact expression

dx t, (z, np —ix) + i dx [t, (z, np. + ix) —t, (z, np —ix)].
27T'X (14)

The sum is converted into two integrals; each integrand
decreases exponentially for large x and for all complex z
values with noninteger real part. This analytic continua-
tion technique together with the cycle expansion in terms
of periodic orbit families is the main result of this Letter.
We are now able to calculate periodic orbit product for-
mulas of the type (2) in the form of exponentially con-
verging expansions also for marginally stable behavior.

The real part of the zeros of the cycle expanded function
(3) including contributions up to head string length 4 are
listed in Table I. Agreement remains for the regular parts
of the spectrum; in addition, the perturbation of the N = 4
series is now clearly resolved. Results of similar quality
are obtained for the m = 1 states. The error is expected
to increase for larger off-line excitations, and the full six-
dimensional phase space dynamics then has to be taken
into account. The imaginary part of the resonances can
at present be only qualitatively reproduced; the width of
the resonances is typically orders of magnitude smaller
than the level spacings and still below the resolution of
the semiclassical method used here [18].

We conclude that the structure of the helium spectrum
can be well understood from semiclassical arguments.
The regular parts of the spectrum can be assigned to
a regular limit of the dynamics, whereas interference
effects are caused by strong electron-electron interactions,
which give raise to chaotic motion. We claim that this
correspondence is valid in general for multithreshold
spectra; a semiclassical quantization of the diamagnetic
Kepler problem can be worked out successfully in the
same spirit [18]. The results are based on a new method
to include regular parts of the classical dynamics in
a convergent way within the zeta function formalism.
This approach is a step towards a general treatment of
intermittency in periodic orbit expressions and a detailed
study of generic mathematical properties of zeta functions
for dynamical systems with marginally stable behavior.
Our QEBK formulas suggest a generalization of the EBK

theory and have been shown here to describe threshold
behavior in atomic spectra.
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