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Tracking Unstable Turing Patterns through Mixed-Mode Spatiotemporal Chaos
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A method is presented for stabilizing and tracking unstable Turing patterns in reaction-diffusion

systems.

The Gray-Scott model is used to simulate a chemical system exhibiting spatiotemporal
chaos arising from the interaction between Turing and Hopf bifurcations.

The local behavior of the

unstable pattern is first approximated with a single-input, single-output linear model constructed from
a time series. A recursive control algorithm is then used to stabilize and track the unstable pattern by
monitoring a single point in space and making small adjustments to a global parameter.

PACS numbers: 82.40.Bj, 05.45.+b

Stabilization techniques based on the Ott-Grebogi-
Yorke (OGY) [1] method have been highly successful
for controlling low-dimensional systems [2]. Controlling
spatiotemporal systems remains a challenge, however,
because the unstable states in such systems are typically
high dimensional, involving multiple stable and unstable
modes. Some spatiotemporal systems can be controlled
with simple methods, such as propagating fronts with
highly correlated spatial modes [3], convectively unsta-
ble systems [4], or systems that are stabilized at multiple
sites [5]. Periodic behavior in myocardium tissue [6] and
hippocampal brain tissue [7] has been stabilized by de-
ducing the stable and unstable manifold positions from
time delay maps and applying appropriate perturbations.
Simple control approaches typically fail, however, when
the unstable state has more than one unstable direction.
Auerbach et al. [8] and Romerias et al. [9] have general-
ized the OGY method for stabilizing systems with many
stable and unstable manifolds.

We recently proposed a control method that combines
the OGY approach with the classical control routines
of single-input, single-output (SISO) systems [10]. The
method was applied to stabilize unstable periodic orbits
and steady states of the Kuramoto-Sivashinsky equation.
In this Letter we demonstrate how the method can be
applied to stabilize and track unstable Turing patterns
through mixed-mode spatiotemporal chaos.

A recent study by De Wit, Dewel, and Borckmans [11]
has shown how spatiotemporal chaos arises in reaction-
diffusion systems near a Turing-Hopf codimension-2
bifurcation point. The interaction between the Turing and
Hopf modes in the vicinity of such a point may result
in mixed-mode spatiotemporal oscillations. We use the
Gray-Scott cubic autocatalysis model [12] to simulate
a 1D reaction-diffusion system exhibiting mixed-mode
spatiotemporal chaos.

The governing equations of the reaction-diffusion Gray-
Scott model [13] have the form
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where V2 = 92/9x? in the 1D case, and 8 = D,/Dg
is the ratio of the reactant and autocatalyst diffusion
coefficients. The diffusion terms are calculated using
finite differences, and no-flux boundary conditions are
imposed at x = 0 and x = 300. We concentrate on the
behavior of this slystem for the specific parameter values
Bo = 15, K2 = 35, and & = 4.6.

The bifurcation diagram corresponding to varying the
remaining parameter 7% is shown in Fig. 1. The steady-
state locus yields a “mushroom” pattern with two ranges
of multiple steady states, one at low Ty, and one at high
Ties. In addition, there is a Hopf bifurcation point along
the uppermost branch of the mushroom. As the residence
time is increased the homogeneous steady state loses
stability at this point and a stable limit cycle emerges,
with homogeneous oscillations displayed throughout the
medium. As T is further increased, a Turing-Hopf
mixed mode appears through a subharmonic instability.
This new solution loses its stability and gives rise to
complex spatiotemporal behavior.

Over the range 214.8 < Ty.s < 242, a Turing pattern
with a typical stationary periodic concentration profile
is observed. The maximum in «(x) of the spatial
oscillations as a function of Ty is shown by the dotted
line in Fig. 1. At high T, the system settles back onto
the limit cycle of the homogeneous oscillations. At low
Tres, the Turing branch becomes unstable as it enters the
complex spatiotemporal region.

We now present a general method for controlling
multidimensional systems using scalar time series (see
Ref. [10] for a detailed description), which we will use for
stabilizing the unstable Turing pattern through the range
of complex behavior. Multidimensional systems are typ-
ically monitored by the observation of a single experi-
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FIG. 1. (a) Homogeneous stable (solid line) and unstable

(dashed line) steady state of the Gray-Scott model as a function
of T.s. The circles show the locus of the stable (@) and
unstable (O) uniform period-1 orbit. (b) Blowup of (a) near
the region of complex spatiotemporal oscillations. The dots
represent the minimum in 1 — « along the spatial profile of
the Turing pattern for Ti.q > 214.8 and show the minimum in
1 — «a oscillations at x = 0 for T,y < 214.8.

mentally accessible variable. Although the correspond-
ing time series is a projection of the system dynamics in
phase space, control can be achieved by using a set of
time-delayed observations.

When an m-dimensional system is sampled with a time
interval 7, the coordinate &; along the ith eigenvector
moves according to

E+n) =&l =M&W) - € i=1...m, @
where EF is the steady-state position and A; is the ith
eigenvalue of the time-discretized system. We assume
that there is an experimentally accessible parameter p
which alters the dynamics in such a way that the fixed
point moves when a small perturbation ép is applied.
Following the application of such a perturbation, the
system evolves according to the position of the shifted
fixed point,

- - o&F

§F(p+5p)=§F(p)+W5p~ 3)
For simplicity, we assume that 2”‘(19) = (0. We also
assume that the perturbation 6 p is kept constant from ¢
to t + 7 and is equal to u(r + 7). Equations (2) and (3)
can then be combined to give the equations of motion in
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the presence of the perturbations:

&l

ap
i=1,...,m. 4

If we introduce a time-shift operator §, such that

G/ (y(1)) = y(r + j7), we can rewrite Eq. (4) as

N o e F
1) = %%um, i=1,..m. 5
In an experimental setting, we typically monitor some
observable y(z) that is a linear combination of the system
variables:

Eilt + 1) = X&) + (1 — Ap) ult + 7),

m

y() =D &), (6)

i=1
We assume that ¢; # 0 for all unstable eigenvectors,
i.e., the unstable behavior is observable using y(t). To
combine Egs. (5) and (6), we introduce the coefficients
that are proportional to the shift of the steady state:
9&l
ap
The relation between perturbation u(7) and observable
y(t) can then be written as

=3 qi_“; ult). ()

i=1
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Equation (8) is a transfer function between the system
input u(r) and output y(z). It models the response of the
m-dimensional system to a perturbation. The common
denominator form of this equation is
A~ Am—1 A
L L R NNC)
q +alq +"'+amq

The denominator of the transfer function is a polynomial
whose roots are eigenvalues of the linearized system. Fol-
lowing Ref. [14], we denote the denominator of Eq. (9) as
A(g) and the numerator as B(g). Equation (9) can now
be rewritten in a compact form:

A(q)y(r) = B(q)ulr). (10)

To find the coefficients from an experimental time series
we express Eq. (10) as
m
y(n) = Z —a;y(n — i) + bju(n + 1 — i), (1
i=1
where y(j) = y(t + j7) and u(j) = u(t + j7). The
coefficients a; and b; of Eq. (11) are calculated directly
from the sampled time series of u(z) and y() as a solution
of the linear system [10]. Rearranging Eq. (9) into the
partial-fraction form of Eq. (8) gives the coefficients
vi. Each v; tells how far the steady state is displaced
along the ith eigenvector following the perturbation and,
in many cases, allows an estimation of the effective
system dimension. Specifically, if the system dimension
is overestimated, then for some i, |y;| << min(|y,l|;=;),
the ith eigendirection can be discarded.

y(t) =
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To stabilize a linear system modeled with Eq. (10),
controlling perturbations are calculated as a linear func-
tion of n delayed readings and n — 1 previous perturba-
tions:

L(q)u(t) = P(q)y(1), (12)

where L(g) and P(g) are the mth order polynomials of
successive powers of the time-shift operator [15]. The
control law coefficients /; and p; determine the behavior
of the closed-loop system according to Egs. (10) and (12):

[A(g) - L(g) — B(@)P(q)]y(1) = A*(q)y(r) = 0, (13)

where the center dot indicates multiplication of the
polynomials. According to Eq. (13), 2m — 1 eigenvalues
of the closed-loop system can be set to any value with an
appropriate choice of the coefficients /; and p; (the pole-
placement technique) [10,15]. We require all eigenvalues
of A*(q) to be stable (modulus < 1) so the system
converges toward the fixed point.

We now demonstrate the stabilization of unstable Turing
patterns with the 1D reaction-diffusion Gray-Scott model.
The linearized recursive model of the dynamical system
is obtained by imposing random perturbations onto the
global parameter Ty at regular sampling intervals 7 =
50.0. Values of « at the system boundary x = 0 along
with the applied perturbations produce a set of data pairs
(y(i), u(i)). This set is fitted to Eq. (11) and the recursive
coefficients a;, b; are calculated using the method of
singular value decomposition. The coefficients /;, p; that
determine the controlling perturbations are found as a
solution of the linear system defined by Eq. (13).

Tracking an unstable state requires adaptive control,
where the values of a; and b; are redetermined each step
with the system in the vicinity of the state. Once the
tracking is initiated, small random perturbations are added
to the continuously applied controlling perturbations to
interrogate the system. This technique allows the control
coefficients to be updated every time the bifurcation
parameter is changed.

To initialize the tracking procedure it is necessary to
determine a solution for some value of the bifurcation
parameter, find the effective dimensionality of the system
in the linear region of that solution, and calculate the
control coefficients. A suitable starting point can be found
in the vicinity of a bifurcation that destabilizes the system.
A stable Turing pattern with nine half-wavelengths is
exhibited by Eq. (1) for Ty = 217.0. The appropriate
value of m was determined during the initialization. It
was found for m = 4 that 4 corresponds to A4 = 0, and
it is 2 orders of magnitude smaller than the remaining
vi. Therefore, the fourth (highly attractive) mode gives a
negligible contribution to the time series readings and can
be discarded. An effective system dimension of three was
used to stabilize the Turing pattern.

One step of the tracking routine is illustrated in Fig. 2.
The identification of the linearized dynamics is carried
out during the first 50 iterations. Once the system
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FIG. 2. Identification and tracking of unstable Turing pattern

at Tes = 214.5. (a) Value of y(i) = a collected at x = 0; (b)
the corresponding adjustments of u(i) = Tyes.

identification is completed (at i = 50), the bifurcation
parameter 7T, is changed to a new value. Provided
the change in T is sufficiently small, the old control
parameters /; and p; are close to the new values and
the system is stabilized. As shown in Fig. 2, the system
converges to the new steady state following the change
in T.s (at i = 51). The identification routine is then
repeated after the convergence reaches a preset limit.

The position of the stabilized Turing pattern was
recorded for each step of the bifurcation parameter and is
shown in Fig. 3(a). The three eigenvalues (Floquet mul-
tipliers) of the unstable Turing pattern are calculated as
the roots of the denominator of Eq. (10). The absolute
values of these roots are shown in Fig. 3(b). The two
complex eigenvalues correspond to the uniform oscilla-
tory mode that becomes unstable at Ty = 214.8 as Tyes
is decreased. The third (real) eigenvalue approaches unity
as the residence time approaches the Turing bifurcation at
Tres = 210.7. When T\ is below this value, the tracking
algorithm switches to the stabilization of the uniform un-
stable steady state, as shown in Fig. 3(a).

The application of the tracking algorithm results in a
qualitative change in behavior at the expense of very
small perturbations to the system. The unstable Turing
pattern is maintained throughout the region where the
autonomous Gray-Scott system exhibits spatiotemporal
chaos. Space-time plots of the autonomous and controlled
systems at Tyes = 214.5 are compared in Fig. 4.
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FIG. 3. Bifurcation diagram showing (a) the autonomous
system response (@) and the tracked unstable Turing pattern
(H). Open circle (O) shows stabilized homogeneous steady
state. Unstable steady state (dashed line) is also shown. (b)
Modulus of complex conjugate eigenvalues (solid line) and
real eigenvalue (dashed line) corresponding to slowest decaying
mode as a function of 7.

A spatially distributed system has an infinite number of
degrees of freedom; however, only two modes of the Tur-
ing pattern become unstable to produce the mixed-mode
chaos. The third, stable mode appears as a response to
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FIG. 4. Space-time plot of autonomous (left) and controlled
(right) Gray-Scott system at 7\, = 214.5.
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the homogeneous perturbations. We note that the method
can be readily applied to control higher dimensional states,
and a four-cell front of the Kuramoto-Sivashinsky equation
with three stable and six unstable modes has been stabi-
lized [10].

When coupled with the tracking technique, the stabi-
lization algorithm provides a model-independent continu-
ation method for bifurcation analysis of experimental sys-
tems. We anticipate that the approach can be extended to
control spatially distributed chemical and biological pro-
cesses in two- and three-dimensional media by monitoring
and perturbing the system at multiple locations separated
by the characteristic correlation length.
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FIG. 4. Space-time plot of autonomous (left) and controlled
(right) Gray-Scott system at Ty, = 214.5.



