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Monte Carlo Simulation of the Ferromagnetic Order-Disorder Transition in a Heisenberg Fluid
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We have performed Monte Carlo simulations of the ferromagnetic order-disorder transition in an
off-lattice version of the Heisenberg model. Varying the temperature at a fixed density, we located the
transition for three different densities by means of a finite-size scaling analysis. The obtained critical
exponents differ from those for the lattice Heisenberg model. Although the limited size of our systems
warrants caution, the results question whether the lattice and the off-lattice model are in the same

universality class.

PACS numbers: 75.50.Mm, 61.20.Ja, 64.60.Fr

Off-lattice versions of the Heisenberg model have been
introduced as a first step towards a model for ferroflu-
ids [1,2]. Although the Heisenberg fluid model is too
crude to be compared with real magnetic fluids, it em-
bodies some of the complexities that can be anticipated in
such fluids; e.g., the Heisenberg fluid displays a magnetic
order-disorder transition besides phase transitions between
a solid, a liquid, and a vapor phase. Its phase diagram
has been studied by analytic methods [3,4] and by Monte
Carlo (MC) simulations [1] which focused on the inter-
play between the magnetic and the liquid-vapor transition.
The model also poses the question of whether the mag-
netic transition is in the same universality class as the cor-
responding transition in the lattice model. The Heisen-
berg fluid resembles the lattice model with an annealed
site dilution, and the critical properties can be expected
to be the same [5]. There is, however, to the best of
our knowledge, little known about the fate of universal-
ity when diluting the sites in the lattice Heisenberg model
[5]. According to the Fisher renormalization scheme [6],
arguments predict that the dilution does not change the
critical exponents. There seem to be no experimental re-
sults on critical exponents in a magnetic fluid.

Our study presents a first simulation of the magnetic
critical properties in an off-lattice model. We use finite-
size scaling (FSS) relations and other now relatively
standard techniques, such as the use of the Binder
parameter [7], to extract the critical behavior. Our
results can be compared with accurate estimates of, e.g.,
the critical exponents for the lattice Heisenberg model
obtained from previous MC simulations [8—10].

In the simulations we use the potential

o Fij < o,
& (i, 7j,50,5) = 1 —J(rij)si - 5 o <ryj <2250,
rij > 250,
where ¢ (7;,7;,5;,5;) denotes the potential between a
particle i with position 7; and spin 5; and a particle j
with position and spin 7; and 5;. The position space is
three dimensional and the spins are Heisenberg spins, i.e.,
each spin s; is a three-dimensional vector of unit length.
The hard-core repulsion at distances ry; (r;; = |r;i — 7;l)
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smaller than o prohibits these interparticle distances,
while two particles farther than 2.50 away from each
other do not interact. The Heisenberg-like interaction,
at distances r;; in between, has a ferromagnetic, Yukawa
type coupling constant

ag ry — o
J(r) = 6-exp{ },
r o

where € sets the energy scale of the interaction. This
potential is identical to the one used by Lomba et al,
except that they cut the potential at a much larger distance
than 2.50.

We limit our study to the magnetic order-disorder
transition away from the first-order liquid-vapor line.
Following Lomba et al., we vary the temperature 7" in our
simulations while keeping the density fixed. We do this
for three densities n: n = 0.4, n = 0.6, and n = 0.7 (all
densities are expressed in units ¢ ~3). The use of systems
with a number of particles N ranging from N = 108 to
N = 1372 (for n = 0.4 and n = 0.7) or from N = 108
to N = 2916 (for n = 0.6) permitted us to investigate the
critical behavior by a FSS analysis.

In the simulations, the positions were sampled with
a regular Metropolis scheme, and the spin degrees of
freedom with the Wolff algorithm [11]. Two sweeps, in
each of which we attempt to move each particle once,
are followed by the construction of one Wolff cluster
after which the Monte Carlo proceeds with the next two
sweeps. The acceptance ratio of the trial moves was
around 50%. The size of the Wolff cluster around 7.
varied between 15% of the total number of particles N for
N = 108 and 5% for N = 2916. A system is typically
followed for 10° sweeps with the corresponding 0.5 X
10® Wolff updates (except the N = 2916 system, which
we simulated for 0.48 X 10° sweeps with 0.24 X 10°
Wolff updates).

After each Wolff update we measure the magnetization
m, m = (3N, 5))/N, and the energy U of the system.
For each N, n, and T we calculate the average magneti-
zation moments (m*)m. (m = |m|, k = 1,2,3,4, and the
subscript mc stands for microcanonical) as a function of
the energy per particle u of the system, and sample the
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energy distribution P(x). With the multihistogram tech-
nique we can then, for a given N and n, reconstruct the
canonical averages (m*) for all temperatures 7 around the
temperatures {7;} at which we performed the simulations
[9,12]. The microcanonical magnetization moments and
the energy distribution are averaged over and stored after
blocks of 10* consecutive Wolff updates for error anal-
ysis. Simulations of systems smaller than 1372 particles
ran on a Cray YMP-EL. The largest systems ran on a
Cray C-98.

For the density n = 0.6 we simulated systems of N =
108, 256, 500, 1372, and 2916 particles. The system
with N = 108 was simulated at 7 = 3.1, 3.15, and 3.2;
the systems with N = 256 and N = 500 at T = 3.05,
3.1, 3.15, 3.2, and 3.25; the system with N = 1372 at
T = 3.13, 3.16, and 3.19; and the system with N = 2916
at T = 3.12, 3.15, and 3.18 (all temperatures are given
in units €/kp with kg Boltzmann’s constant). Figure 1
shows the Binder parameter uy = 1 — (m*)/3(m*)* [7]
as a function of T for the five system sizes. We estimate
T, from the intersection temperatures 7; of the N = 108
curve with the other curves. A fit of T;(b) = T, +
¢/Inb with b = (N/108)'/3 yields T, = 3.153(3), ¢ =
(=1 % 2) X 1073 with a goodness of fit 0 = 0.84 [8,9].
The same procedure for the intersections of the N = 256
curve with the curves for larger N yields 7, = 3.151(3),
c=(5=19) X 107* with Q = 0.69. The same fit to
the values of the Binder parameters at the intersection
point yields w4, = 0.6081(8),c = (2 = 5) X 1074, Q =
0.96 for intersections with the N = 108 curve. The N =
256 curve yields us. = 0.608(1), ¢ = (—1 = 6) X 1074,
Q = 0.08. The critical Binder parameter for the lattice
Heisenberg model is ug. = 0.6217(8) [8,9].

FSS predicts the magnetization at 7., m. to vary with
the linear system size L as m. < L™P/*, with B and
v the magnetization and correlation length exponents,
respectively [7]. A straight line fit of logm,. vs logL is
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FIG. 1. Binder parameter u4 versus the temperature 7 for
systems ranging from N = 108 to N = 2916 at the density
n = 0.6. The dots are averages over single simulations and
the lines result from interpolation by histogram reweighting.
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best (Q = 0.88) for an estimate of 7. = 3.145 and gives
B/v = 0.5546(17), see Fig. 2. For an estimate of 7, =
3.14 we find B/v = 0.5402(16), Q = 0.14, while the
estimate 7, = 3.15 yields 8/v = 0.5690(17) with Q =
0.32. Straight line fits of the higher moments (m*) at T.
vs logL (k = 2,3,4) all yield best fits for T, = 3.145 and
identical values for 8/v. One finds B8/v = 0.514(1) for
the lattice Heisenberg model [8§—10].

The susceptibility y, x = L*((m?) — (m)?)/kpT, has,
as a function of 7, a maximum Y,. According to
FSS, xm < LY* with y/v =3 — 2(8/v) and 7y the
susceptibility exponent. A straight line fit of logy,, vs
logL yields y/v = 1.856(9) with Q = 0.38. The ratio
v/v can also be estimated from y. = y(7T.) for which
the same scaling as for y,, is predicted. Straight line
fits of logy. vs logL are good fits (with Q > 0.6) for
a wide range of temperatures although with a systematic
variation in the resulting y/v. If we take T, in the
range 3.145 < T, < 3.155, we estimate y/v = 1.84(2).
The Heisenberg lattice value is v/v = 1.973(2) [8-10].
The ratio y./xm is according to FSS independent of L
for large sufficiently L [7]. Fitting this ratio for the
five system sizes to a constant ¢, we obtain a best fit
¢ = 0.953(1) (Q = 0.38) for the estimate T, = 3.155.
For the estimate 7. = 3.15 the fit worsens to Q = 0.03
[c = 0.946(1)], while for T. = 3.16 we have Q = 0.11
[c = 0.958(1)].

The ratio 1/v can, e.g., be obtained from the min-
ima in dm/dT as a function of T. They should scale
as (Om/dT)mn = LU~A/7  However, the curve of
log(dm/0T)min vs logL shows a pronounced curvature
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FIG. 2. Log-log plot of the magnetization at 7., m. versus the

linear system size L. The squares are the results for the five
system sizes at the density n = 0.6 and four estimates of 7:
T. = 3.14, 3.145, 3.15, 3.156. At any L, m. decreases for a
higher estimate of 7.. Error bars on the squares do not exceed
the symbol size. The line is the straight line fit to the points
for T. = 3.145. The points for the other estimates of 7. show
an increased curvature.
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FIG. 3. Data-collapse plot for the susceptibility with 7. =  FIG. 4. Same as Fig. 2 with 7. = 3.15 and the lattice

3.15, y/v = 1.85, and 1/v = 1.41.
system sizes at n = 0.6.

The plot shows the five

leading to the poor value Q = 0.01 for a straight line
fit. Limiting the fit to the N = 500, 1372, and 2916
systems yields Q = 0.58 and (1 — B)/v = 0.86(3).
With B/v = 0.56(2) we obtain 1/v = 1.42(3). The
magnetization derivative dm/dT at T, should scale in
the same fashion but yields once more curved lines on a
log-log plot for all reasonable estimates of 7.. Even if we
limit the fit to the three largest systems, we retain rather
poor fits: Q = 0.21-0.24 with (1 — B)/v = 0.86(2) for
all estimates of 7, between 3.13 and 3.16. If we inspect
the slope dus/0T at T., which FSS predicts to scale as
(dusq/dT)r. = LV¥, we find good straight line fits of
log(dua/0T )7, vs logL for a large range of choices for
T.. If we take T, = 3.15, we estimate 1/v = 1.40(3).
The Heisenberg lattice value is 1/v = 1.421(5) [8-10].

Our final estimates are 7. = 3.150(5), u4. =
0.6081(8), B/v =0.56(2), /v =1.85(1), and
1/v = 1.41(3) for the density n = 0.6. The data-
collapse plots in Figs. 3 and 4 show again that the
simulations favor this estimate of y/v above the value
for the lattice model.

The analysis for n = 0.4 and n = 0.7 is similar al-
though somewhat less convincing because of the absence
of a N = 2916 system. Moreover, the data for N = 0.7
show in general more scatter than at the lower densities.
For N = 0.4 we obtain T, = 1.940(5), us. = 0.6130(8),
B/v = 0.55(2), y/v = 1.86(3),and 1/v = 1.35(5). For

= 0.7 we obtain T. = 3.79(1), use. = 0.605(2), B/v =
0.55(2), y/v = 1.84(3), and 1/v = 1.42(3). The results
are summarized in Table I.

We tried to ascertain whether our data are compati-
ble with the lattice Heisenberg exponents and the inclu-
sion of corrections to FSS. We fitted x,, for n = 0.6 by
xm(L) = ¢ L% + ¢,L™Y*7/? with y /v fixed at the lat-

Heisenberg exponents y/v = 1.973 and 1/v = 1.421. The
curves are shifted downward with increasing system size: The
top curve is for the N = 108 system and the bottom curve for
N = 2916.

tice Heisenberg value 1.975 [8—10]. If we fix y at values
0 <y = 0.1, the fit routine gives values ¢; < 0, which is
unphysical. For y = 0.2 we obtain ¢; = 0.0066(9), ¢, =
0.016(1), Q = 0.35. The goodness of fit decreases with
increasing y with, e.g., Q@ = 0.21 for y = 0.4. Hence
the assumption of lattice Heisenberg critical behavior with
corrections to scaling does not fit the data better.

Monte Carlo simulations of an off-lattice Heisenberg
fluid are in agreement with a FSS description, but with
exponents and a critical Binder parameter that are slightly,
but significantly, different from those for the lattice. The
limited system sizes and the limited range of sizes require
this observation to be taken cautiously. Nevertheless, the
discrepancies are serious enough to challenge the view
that the ferromagnetic transition is the same for the lattice
and the off-lattice model.

We thank D. Levesque, H.J. Hilhorst, H. W.J. Blote,
J.R. Heringa, and G. Stell for their interest and their
suggestions. Computing time on the C-98 was granted

TABLE I. Summary of results. n is the density; 7. the
critical temperature; wu4. the critical value of the Binder
parameter; and B/v, y/v, and 1/v are exponent ratios. The
last row gives the results for the lattice Heisenberg model from

Refs. [8—10]. The critical temperature in this row is for the
simple cubic lattice [T. = 2.0542(2) for the bec lattice [10]].

n T Use B/v y/v /v
0.4 1.940(5) 0.6130(8) 0.55(2) 1.86(3) 1.35(5)
0.6 3.150(5) 0.6081(8) 0.56(2) 1.85(1) 1.41(3)
0.7 3.79(1) 0.605(2) 0.55(2) 1.84(3) 1.42(3)

Lattice 1.44293(8) 0.6217(8) 0.514(1) 1.973(2) 1.421(5)
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