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Monte Carlo Simulation of the Ferromagnetic Order-Disorder Transition in a Heisenberg Fluid

M. J.P. Nijmeijer and J.J. Weis

(Received 20 March 1995)

We have performed Monte Carlo simulations of the ferromagnetic order-disorder transition in an
off-lattice version of the Heisenberg model. Varying the temperature at a fixed density, we located the
transition for three different densities by means of a finite-size scaling analysis. The obtained critical
exponents differ from those for the lattice Heisenberg model. Although the limited size of our systems
warrants caution, the results question whether the lattice and the off-lattice model are in the same
universality class.

PACS numbers: 75.50.Mm, 61.20.Ja, 64.60.I r

Off-lattice versions of the Heisenberg model have been
introduced as a first step towards a model for ferroAu-
ids [1,2]. Although the Heisenberg Quid model is too
crude to be compared with real magnetic fluids, it em-
bodies some of the complexities that can be anticipated in
such ftuids; e.g. , the Heisenberg quid displays a magnetic
order-disorder transition besides phase transitions between
a solid, a liquid, and a vapor phase. Its phase diagram
has been studied by analytic methods [3,4] and by Monte
Carlo (MC) simulations [1] which focused on the inter-

play between the magnetic and the liquid-vapor transition.
The model also poses the question of whether the mag-
netic transition is in the same universality class as the cor-
responding transition in the lattice model. The Heisen-
berg Quid resembles the lattice model with an annealed
site dilution, and the critical properties can be expected
to be the same [5]. There is, however, to the best of
our knowledge, little known about the fate of universal-
ity when diluting the sites in the lattice Heisenberg model
[5]. According to the Fisher renormalization scheme [6],
arguments predict that the dilution does not change the
critical exponents. There seem to be no experimental re-
sults on critical exponents in a magnetic fluid.

Our study presents a first simulation of the magnetic
critical properties in an off-lattice model. We use finite-
size scaling (FSS) relations and other now relatively
standard techniques, such as the use of the Binder
parameter [7], to extract the critical behavior. Our
results can be compared with accurate estimates of, e.g. ,
the critical exponents for the lattice Heisenberg model
obtained from previous MC simulations [8—10].

In the simulations we use the potential

f(r, , rj, s;, sj) = J(rij )si sj
0

where @(r;,rj, s;, sj) denotes the potential between a
particle i with position r; and spin s; and a particle j
with position and spin r~ and ~j. The position space is
three dimensional and the spins are Heisenberg spins, i.e.,
each spin ~; is a three-dimensional vector of unit length.
The hard-core repulsion at distances r;j (r;~ = ~r;

—rj~)

smaller than u. prohibits these interparticle distances,
while two particles farther than 2.5o away from each
other do not interact. The Heisenberg-like interaction,
at distances r;j in between, has a ferromagnetic, Yukawa
type coupling constant

where e sets the energy scale of the interaction. This
potential is identical to the one used by Lomba et al. ,

except that they cut the potential at a much larger distance
than 2.5a. .

We limit our study to the magnetic order-disorder
transition away from the first-order liquid-vapor line.
Following Lomba et al. , we vary the temperature T in our
simulations while keeping the density fixed. We do this
for three densities n: n = 0.4, n = 0.6, and n = 0.7 (all
densities are expressed in units o. ). The use of systems
with a number of particles N ranging from N = 108 to
N = 1372 (for n = 0.4 and n = 0.7) or from N = 108
to N = 2916 (for n = 0.6) permitted us to investigate the
critical behavior by a FSS analysis.

In the simulations, the positions were sampled with
a regular Metropolis scheme, and the spin degrees of
freedom with the Wolff algorithm [11]. Two sweeps, in
each of which we attempt to move each particle once,
are followed by the construction of one Wolff cluster
after which the Monte Carlo proceeds with the next two
sweeps. The acceptance ratio of the trial moves was
around 50%. The size of the Wolff cluster around T,
varied between 15% of the total number of particles N for
N = 108 and 5% for N = 2916. A system is typically
followed for 10 sweeps with the corresponding 0.5 X
106 Wolff updates (except the N = 2916 system, which
we simulated for 0.48 X 10 sweeps with 0.24 X 10
Wolff updates).

After each Wolff update we measure the magnetization
m, m = (P;, s;)/N, and the energy U of the system.
For each N, n, and T we calculate the average magneti-
zation moments (m"), (m = ~rn~, k = 1, 2, 3, 4, and the
subscript mc stands for microcanonical) as a function of
the energy per particle u of the system, and sample the
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FIG. 3. Data-collapse plot for the susceptibility with T, =
3.15, y/v = 1.85, and 1/v = 1.41. The plot shows the five
system sizes at n = 0.6.

FIG. 4. Same as Fig. 2 with T,. = 3.15 and the lattice
Heisenberg exponents y/v = 1.973 and 1/v = 1.421. The
curves are shifted downward with increasing system size: The
top curve is for the N = 108 system and the bottom curve for
N = 2916.

leading to the poor value Q = 0.01 for a straight line
fit. Limiting the fit to the N = 500, 1372, and 2916
systems yields Q = 0.58 and (1 —p)/v = 0.86(3).
With P/v = 0.56(2) we obtain 1/v = 1.42(3). The
magnetization derivative r)m/r)T at T, should scale in
the same fashion but yields once more curved lines on a
log-log plot for all reasonable estimates of T, . Even if we
limit the fit to the three largest systems, we retain rather
poor fits: Q = 0.21 —0.24 with (1 —p)/v = 0.86(2) for
all estimates of T, between 3.13 and 3.16. If we inspect
the slope r)u4/r)T at T„which FSS predicts to scale as
(r)u4/r)T)T ~ L' ', we find good straight line fits of
log(r)u4/r)T)T, vs logL for a large range of choices for
T, . If we take T, = 3.15, we estimate 1/v = 1.40(3).
The Heisenberg lattice value is 1/v = 1.421(5) [8—10].

Our final estimates are T, = 3.150(5), u4, =
0.6081(8), P/v = 0.56(2), y/v = 1.85(1), and
1/v = 1.41(3) for the density n = 0.6. The data-
collapse plots in Figs. 3 and 4 show again that the
simulations favor this estimate of y/v above the value
for the lattice model.

The analysis for n = 0.4 and n = 0.7 is similar al-
though somewhat less convincing because of the absence
of a N = 2916 system. Moreover, the data for N = 0.7
show in general more scatter than at the lower densities.
For N = 0.4 we obtain T, = 1.940(5), u4, = 0.6130(8),
P/v = 0.55(2), y/v = 1.86(3), and 1/v = 1.35(5). For
n = 0.7 we obtain T, = 3.79(1), u4, = 0.605(2), P/v =
0.55(2), y/v = 1.84(3), and 1/v = 1.42(3). The results
are summarized in Table I.

We tried to ascertain whether our data are compati-
ble with the lattice Heisenberg exponents and the inclu-
sion of corrections to FSS. We fitted y, for n = 0.6 by

(L) = c&L~ ' + c2L ~+&/" with y/v fixed at the lat-

tice Heisenberg value 1.975 [8—10]. If we fix y at values
0 & y ~ 0.1, the fit routine gives values c~ & 0, which is
unphysical. For y = 0.2 we obtain c~ = 0.0066(9), c2 =
0.016(1), Q = 0.35. The goodness of fit decreases with
increasing y with, e.g. , Q = 0.21 for y = 0.4. Hence
the assumption of lattice Heisenberg critical behavior with
corrections to scaling does not fit the data better.

Monte Carlo simulations of an off-lattice Heisenberg
fluid are in agreement with a FSS description, but with
exponents and a critical Binder parameter that are slightly,
but significantly, different from those for the lattice. The
limited system sizes and the limited range of sizes require
this observation to be taken cautiously. Nevertheless, the
discrepancies are serious enough to challenge the view
that the ferromagnetic transition is the same for the lattice
and the off-lattice model.

We thank D. Levesque, H. J. Hilhorst, H. W. J. Blote,
J. R. Heringa, and G. Stell for their interest and their
suggestions. Computing time on the C-98 was granted

&4c 1/v

0.4 1.940(5) 0.6130(8) 0.55(2) 1.86(3) 1.35(5)
0.6 3.150(5) 0.6081(8) 0.56(2) 1.85(1) 1.41(3)
0.7 3.79(1) 0.605(2) 0.55(2) 1.84(3) 1.42(3)
Lattice 1 44293(8) 0.6217(8) 0.514(1) 1.973(2) 1.421(5)

TABLE I. Summary of results. n is the density; T,. the
critical temperature; u4, . the critical value of the Binder
parameter; and P/v, y/v, and 1/v are exponent ratios. The
last row gives the results for the lattice Heisenberg model from
Refs. [8—10]. The critical temperature in this row is for the
simple cubic lattice [T, = 2.0542(2) for the bcc lattice [10]].
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