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Molecular Geometry Optimization with a Genetic Algorithm
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We present a method for reliably determining the lowest energy structure of an atomic cluster in an

arbitrary model potential. The method is based on a genetic algorithm, which operates on a population
of candidate structures to produce new candidates with lower energies. Our method dramatically
outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-
binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster
structures up to C6o starting from random atomic coordinates.

PACS numbers: 61.46.+w

Advances in computer technology have made molecular
dynamics simulations more and more popular in studying
the behavior of complex systems. Even with modern-day
computers, however, there are still two main limitations
facing atomistic simulations: system size and simulation
time. While recent developments in parallel computer
design and algorithms have made considerable progress
in enlarging the system size that can be accessed using
atomistic simulations, methods for shortening the simula-
tion time still remain relatively unexplored.

One example where such methods will be useful is in
the determination of the lowest energy configurations of
a collection of atoms. Because the number of candidate
local energy minima grows exponentially with the num-
ber of atoms, the computational effort scales exponentially
with problem size, making it a member of the NP-hard
problem class [1]. In practice, realistic potentials describ-
ing covalently bonded materials possess significantly more
rugged energy landscapes than the two-body potentials ad-
dressed by the authors of Ref. [1], further increasing the
difficulty. Attempts to use simulated annealing to find the
global energy minimum in these systems are frustrated by
high-energy barriers which trap the simulation in one of the
numerous metastable configurations. Thus an algorithm is
needed which can "hop" from one minimum to another and
permit an efficient sampling of phase space.

In this Letter, we will describe the application of such
an algorithm to the concrete example of determining the
ground state structure of small atomic clusters. The most
interesting clusters are those which lie in the transition
range between rnolecules and bulk matter. These are
precisely the ones that can be expected to have unusual
structures which are unrelated to either the bulk or
molecular limits. For a few atoms, the ground state
can sometimes be found by a brute force search of
configuration space. For up to 10 or 20 atoms, depending
upon the potential, simulated annealing may be employed
to generate some candidate ground state configurations
[2]. For more atoms than this, the simulation time
required to find the minimum by simulated annealing is
usually prohibitive, because evaluations of the potential

and forces are too expensive. In this regime one is left
with judicious guessing of likely candidate ground state
structures.

Our approach is based on the genetic algorithm (GA),
an optimization strategy inspired by the Darwinian evolu-
tion process [3]. Starting with a population of candidate
structures, we relax these candidates to the nearest local
minimum. Using the relaxed energies as the criteria of fit-

ness, a fraction of the population is selected as "parents. "
The next generation of candidate structures is produced
by "mating" these parents. The process is repeated until
the ground state structure is located.

We have applied this algorithm to optimize the geome-
try of carbon clusters up to C60. In all cases we studied,
the algorithm efficiently finds the ground state structures
starting from an unbiased population of random atomic
coordinates. This performance is very impressive since
carbon clusters are bound by strong directional bonds
which result in large energy barriers between different iso-
mers. Although there have been many previous attempts
to generate the C60 buckyball structure from simulated an-

nealing, none has yielded the ground state structure [4].
Before presenting our results, we will describe our

genetic algorithm procedure in more detail. The choice of
mating procedure is the central choice one must make in

constructing a genetic algorithm. In an efficient algorithm,
it should impart important properties of the parent clusters
to the children. A common choice [5] is to first map
the physical structure onto a binary number string, then
use string recombination as a mating procedure. Such
an approach has been applied to optimize the packing
structure of small molecular clusters and the conformation
of some molecules [6]. We found that it is not very
efficient, however, when used to optimize the geometry
of atomic clusters. This is because the mating operation
does not preserve the characteristics of the parents.

In the present work, we represent an atomic cluster by
the list of N atomic Cartesian coordinates x, in arbitrary
order,
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Our mating operator P: P(g, g') ~ g" performs the
following action upon two parent geometries g and g'
to produce a child g". First, we choose a random plane
passing through the center of mass of each parent cluster.
We then cut the parent clusters in this plane, and assemble
the child g" from the atoms of g which lie above the
plane, and the atoms of g' which lie below the plane. If
the child generated in this manner does not contain the
correct number of atoms, the parent clusters are translated
an equal distance in opposing directions normal to the
cut plane so as to produce a child g" which contains the
correct number of atoms.

Relaxation to the nearest local minimum is performed
with conjugate-gradient minimization or molecular dy-
namics quenching. Typically, about 16 conjugate-gradient
steps or about 30 molecular dynamics steps are applied to
a new geometry before a decision is made whether further
optimization is warranted.

We preferentially select parents with lower energy from
{g). The probability p(g) of an individual candidate

g to be selected for mating is given by the Boltzmann
distribution

p(6) exp[ —E(6)/T ],
where E(g) is the energy per atom of the candidate g,
and the mating "temperature" T is chosen to be roughly
equal to the range of energies in (g).

In some cases, described below, we found it necessary
to apply mutations to members of the population. We
define a mutation operator M: M(g) ~ g' which per-
forms one of two functions with equal probability. The
first mutation function moves the atoms in g a random
distance (of the same order as a bond length), in a random
direction, a random number of times (between 5 and 50),
while separating unphysically close atoms between each
step. The second mutation function implements a simple
search for an adjacent watershed in the potential energy
hypersurface. We employ an algorithm [7] which takes a
random number of steps in atomic coordinate space. At
each step the algorithm changes direction so as to main-
tain travel along a direction slightly uphill to an equipo-
tential line. The result of this is generally a high-energy
cluster, but one which lies in an adjacent watershed region
of E((x)).

We maintain a population (g) of p candidates, and
create subsequent generations as follows. Parents are
continuously chosen from [g) with probability given by
Eq. (2) and mated using the mating procedure described
above. A fraction p, of the children generated in this
way are mutated; p, = 0 means no mutation occurs. The
(possibly mutated) child is relaxed to the nearest local
minimum and selected for inclusion in the population if
its energy is lower than another candidate in ig).

This procedure requires the algorithm to keep track
of a large number of candidates in ig), since the
population generally becomes filled with almost identical

low-energy candidates. These duplicated efforts reduce
the algorithm's efficiency. To prevent this, we introduce
an energy resolution BE, and allow new entries to ig)
only if there are no other candidates already in (g) whose
energy is within 6E of the new entry's energy.

To illustrate the method, we use a tight-binding model
for carbon, described elsewhere [8]. This potential accu-
rately describes the energetics of fullerene structures.

Figure 1 shows the model potential energy of the lowest
and highest energy C6o cluster in (g) versus the number
of genetic mating operations performed with no mutation
(p, = 0) on a population of p = 4 candidates, starting
from coordinates chosen at random. We used a mating
temperature T = 0.2 eV/atom, and an energy resolu-
tion BE = 0.01 eV/atom. This cluster is too large for
unbiased simulated annealing [9] to arrive at the correct
global minimum (the icosahedral buckminsterfullerene
cage). As Fig. 1 illustrates, the genetic algorithm cor-
rectly generates the cage after roughly 5000 mating
operations.

Figure 1 illustrates several generic features of the al-
gorithm. During the initial few generations, the energy
drops very quickly and the population soon consists of
reasonable candidates, similar to what would be observed
with simulated annealing. This initial period is usually
a small fraction of the total time spent by the algorithm.
The rest of the time is spent in an end game, where the re-
maining defects in the structure are removed [Figs. 1(a)—
1(c)]. The general behavior of the genetic algorithm is

-8.9

-9.0—
0
a5 -9.1—

@ -9.2—

8 93
-9.4

0

(a) (b) (c)

$$$
~ ~ ~

o eg
b

\
buckyball

~ riot ~ 0 SOOR ~ \

1000 2000 3000 4000 5000 6000
mating operations

FIG. 1. Generation of the C60 molecule, starting from random
coordinates, using the genetic algorithm described by the text
with 4 candidates (P = 4) and no mutation (p, = 0). The
energy per atom is plotted for the lowest energy (solid line)
and highest energy (dashed line) candidate structure in ig) as a
function of the number of genetic mating operations P (see text)
that have been applied. Several of the intermediate structures
which contain defects are illustrated at the top: (a) contains one
12-membered ring and two 7-membered rings, (b) contains a
7-membered ring, and (c) contains the correct distribution of
pentagons and hexagons, but two pentagons are adjacent. The
ideal icosahedral buckyball structure is achieved shortly after
5000 genetic operations.
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remarkably resistant to changes in the details of the algo-
rithm. The C60 cage is found reliably over a wide range
of values of the mating temperature T, number of candi-
dates p, and the number of conjugate-gradient optimiza-
tions performed upon each application of O. In addition,
the use of schemes other than Eq. (2) for selecting parents
from (g) also leads to the correct final answer. For ex-
ample, we tried using equal mating probabilities p(g) for
all candidates regardless of energy, as well as a probabil-
ity linear in the energy. All of these variations produced
genetic algorithms which worked satisfactorily.

In cases with several competing low-energy states, it is
sometimes advantageous to investigate the minimization
of a number of "ecologies, " that is, to repeat the above
process with different starting populations. For example,
in smaller clusters of carbon atoms, a bimodal mass spec-
trum has been observed in laser vaporization experiments
[10], and this has been interpreted [11] as evidence that
two regimes of C~ cluster growth exist: for N ~ 25,
monocyclic and polycyclic rings are formed, while for
N ~ 25, fullerene cages are formed. Thus, for clusters
around this size, there is a competition between cagelike,
ringlike, and caplike structures. Searches for the global
energy minimum must surmount the difficulty of becom-
ing trapped in one of these structural classes.
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FIG. 3. Running the genetic algorithm on Cqo. The solid line
shows the lowest energy structure when the algorithm is run
with no mutation (p, = 0) for an ecology that failed to find the
minimum energy configuration (a fullerene cage) within 4000
genetic operations. The structures (la) —(lc) are present in the
population at the times indicated. The structure (1c) resulting
after 4000 genetic operations is a cage, and is eventually
reduced to the perfect fullerene cage even with p, = 0. The
broken lines illustrate two p, = 0.05 ecologies which arrive at
the perfect cage (2b) via distinct routes (2a), (3a).
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FIG. 2. Running the genetic algorithm on Cqo. The solid line
shows the generic lowest energy structure when the algorithm
is run with no mutation (p, = 0); the structures (la) —(lc) are
present in the population at the times indicated. Essentially all
ecologies get trapped in monocyclic rings (lc). The dashed
line [structures (2a) —(2c)] and the dot-dashed line [structures
(3a) and (3b)] illustrate the results when mutation is added
(p = 0.05).

Figures 2 and 3 show the results of running the genetic
algorithm on Cpo and C3O clusters, using the same parame-
ters p = 4 and T = 0.2 eV/atom that were used to gen-
erate the C6O cage. The solid line in Fig. 2 illustrates the
generic result for Cqo when no mutation is used (p, = 0).
The lowest energy structure for C~o in the model poten-
tial is a polycyclic cap with energy —8.671 eV/atom, and
the fullerene cage structure is not far above, with energy
—8.613 eV/atom. Nevertheless, only a small fraction of
the p, = 0 genetic algorithm ecologies find one of these
structures within 4000 genetic operations. Instead, the
ecologies get "trapped" in monocyclic rings with energy
—8.503 eV/atom [Fig. 2(lc)]. The cap and cage struc-
tures can be found for C~o, however, if we include muta-
tions in our algorithm or, equivalently, by using molecular
dynamics annealing for the relaxation process. For exam-
ple, with p, = 0.05, about 25% of the ecologies find the
polycyclic cap (Fig. 2, broken lines).

In the case of C30, the lowest energy structure in the
model potential is a fullerene cage, and roughly 80% of
the p, = 0 ecologies find it within 4000 genetic opera-
tions. The remaining 20% form cages, but not quickly
enough to find the fullerene (Fig. 3, solid line). With mu-
tations, convergence to the fullerene cage is greatly in-
creased. Essentially all of the p, = 0.05 ecologies find
the C3Q cage within 4000 genetic operations (Fig. 3, bro-
ken lines). The role of mutation in the algorithm is to
allow searches for alternate structural classes. Referring
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to Fig. 2, one sees precipitous drops in energy when a new
class of candidate is discovered. In the case of C3O the
cage structural class appears even with p, = 0 but is more
efficiently reduced to the perfect structure when p, 4 0.

We emphasize that mutation by itself does not effi-
ciently lower the energy of a population. We found that
application of the mutation operator I in the absence of
mating leads to a drastic decrease in the efficiency of the
optimization process.

Like simulated annealing, the genetic algorithm re-
quires repeated evaluation of the energy and forces within
the model potential. The higher efficiency of the genetic
algorithm, however, allows convergence to low-energy
candidates in larger clusters than is possible with simu-
lated annealing. We are currently applying the method to
larger carbon clusters and will present those results else-
where [7]. In addition, we have applied the algorithm
to systems other than carbon clusters, and our prelimi-
nary findings indicate that the algorithm is efficient over a
broad class of structural optimization problems. For ex-
ample, we have successfully applied the method to bulk
and surface geometries, with a suitably modified mating
operator P.

The efficiency of the present algorithm may be increased
in special cases when the class of desired structures is
assumed, and a more complicated mapping between the
genetic representation (genotype) and the cluster structure

(phenotype) could be employed. For instance, in the case
of the larger carbon fullerene clusters we expect that a
representation in terms of a face-dual model [12] would
lead to rapid convergence, since only cage structures would
be investigated.

While the artificial dynamics of the genetic algorithm
cannot be expected to reproduce the natural annealing
process in which atomic clusters are formed, we found
that the intermediate structures located by the genetic
algorithm on its way to the ground state structure are
very similar to the results of simulated annealing. Thus
it appears that the same kinetic factors which inhuence
the annealing process also affect the ease with which a
particular candidate is generated by the genetic algorithm.
If this is true, the genetic algorithm results presented here

can be viewed as analogous to those of greatly extended
conventional simulated annealing runs. More work needs
to be done to determine if this is indeed the case.
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