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Total Energy Calculation of the Magnetocrystalline Anisotropy Energy in the Ferromagnetic
3d Metals
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We demonstrate that total energy calculations based upon only the local density approximation of
density functional theory in combination with an orbital polarization correction can be used to derive
the magnetocrystalline anisotropy energy (MAE) for the ferromagnetic metals, bcc Fe, hcp Co, fcc Co,
and fcc Ni. In the case of bcc Fe, hcp Co, and fcc Co the calculations reproduce the experimental easy
axis as well as the size of the MAE. However, for fcc Ni we obtain the wrong easy axis.

PACS numbers: 71.25.Pi, 71.20.Ad, 71.25.Cx, 75.30.Gw

The calculation of the magnetocrystalline anisotropy
energy (MAE), i.e., the difference in energy when the
magnetization is pointing in two different directions, has
for a long time been an outstanding problem for the 3d
ferromagnetic elements [1]. It was suggested earlier that
the coupling between the magnetization and the lattice,
arising through the spin-orbit interaction, in combination
with an energy band picture, will provide a MAE of
the right order of magnitude for bcc Fe, hcp Co, and
fcc Ni [2]. Several investigations have been reported
within this approach, and one of the conclusions drawn
from these studies is that the technical problems in
resolving the extremely small energy differences which
are needed are very hard to overcome. Previously, an
investigation of the magnetocrystalline anisotropy energy
for the late 3d transition metals, using a standard energy
band calculation method in conjunction with the local
spin density approximation (LSDA), was reported [3].
While the magnitude of the MAE (of the order of p, eV)
was correctly obtained for all three metals, the wrong
easy axis was obtained for hcp Co and fcc Ni, and,
moreover, the number of k points was unduly large.
The calculations presented by Daalderop, Kelly, and
Schuurmans [3] were based on a geometrical constraint
on the charge and spin density of the crystal as well as
of the shape of the crystal potential through the use of
the atomic sphere approximation (ASA). Further, the so-
called force theorem [4] was used to evaluate the energy
difference between two spin directions. However, due to
the development of more efficient and faster computers in
combination with recent advances in accurate total energy
methods, we will in this Letter demonstrate that it has now
become possible to calculate the MAE for the 3d elements
directly from the total energy in a self-consistent way.
This is a most desirable development since from previous
theoretical work one could not draw conclusions about
whether the disagreement between experiment and theory
was due to limitations of the calculational method or due
to the errors associated with the LSDA. Previously, the
total energy difference approach was used to calculate the

MAE for uranium sulphide (US) [5]. However, its MAE
is 10 times larger than for the 3d elements and does not
call for the special treatment we address in this present
Letter.

Here we present results that go beyond the above
mentioned approximations. As a matter of fact, the only
major approximation made here is the LSDA of density
functional theory, used to handle the electron many-body
problem. Accordingly, we will calculate the total energy
by means of a method which does not rely on geometrical
constraints on the charge density, the spin density, and
the potential. The calculations presented here are based
on a full potential method [6] modified to be able to treat
the MAE problem. Since a total energy calculation of
this kind, with a tremendous requirement on the energy
resolution for the 3d ferromagnets, is a most delicate task
(and for this reason has not been done until now), we
will describe the calculations in some detail below and
the special care one has to exercise when performing
theoretical calculations of the MAE. Also, we will point
out the different convergence tests we have performed
to ensure that the calculations have reached the required
accuracy.

The potential is divided into a base geometry consisting
of a muffin-tin region and an interstitial region. The spin-
orbit interaction was added to the Hamiltonian matrix in
the way suggested by Andersen [7]. The basis functions
are linear combinations of augmented, linear muffin-
tin orbitals through 8 = 2 [7,8]. The radial parts of
the basis function inside the muffin tin were calculated
using the scalar relativistic representation [9]. In the
parent muffin-tin sphere, basis functions were expanded
in spherical waves through f = 8, whereas the electronic
density, spin density, and potential were expanded in a
spherical harmonic series through 4 = 8 and where the
full symmetry of the lattice has been taken into account
to reduce the number of harmonics used in the expansion.
In the interstitial region for bcc Fe, fcc Co, and fcc Ni,
the Fourier series was truncated at (see discussion below)
g,„—8 (in units of 27r/a) for the basis functions and
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g,„—14 for the electron density and potential. For hcp
Co the Fourier series was truncated at g „—5.9 for the
basis functions and g „—10.5 for the electron density
and potential. We performed several test calculations with

a larger number of plane waves in the Fourier expansion,
but no change was found in the MAE. Furthermore, in

order to ensure that the expansion of the wave functions
is well converged we used a double basis set. Thus the
total matrix size is 36 X 36 for bcc Fe, fcc Co, and fcc Ni,
and 72 X 72 for hcp Co. As a test we also carried out a
calculation for fcc Ni, where we used more basis functions
(triple basis, with a matrix size of 54 X 54). However,
this extension resulted in a totally negligible change in the
MAE. Thus the use of a double basis set is sufficient
to ensure that the wave function is well converged. For
the k-space integration we used the so-called special
point method [10,11] with a Gaussian broadening of 10—
15 mRy for states close to the Fermi energy. We also
performed a test calculation for fcc Ni with a Gaussian
width of 5 mRy, to see to what extent the broadening
influences the MAE. However, we found no significant
change in the calculated MAE upon modification of this
width.

Depending on the direction of the quantization axis
of the spin, the number of symmetry operations of the
system will be different [12]. Because of that, some
caution regarding the computational details has to be
made. First of all, the irreducible part of the Brillouin
zone (BZ) is different in the two cases. Secondly, since
we are using a Fourier series expansion of the density as
well as the potential and wave function in the interstitial
region, the errors made when truncating these series will
be different for the two spin quantization cases [13].
In order to check the accuracy of the method, and to
make sure that no systematic errors were introduced,
we first performed energy band-structure calculations for
two different magnetization directions with the spin-orbit
interaction set equal to zero. This was done for a large
number of k points to ensure that the sampling of the
BZ was well converged, and with the spin quantized
along [001] and [111]for bcc Fe, fcc Co, and fcc Ni,
and [0001] and [1010] for hcp Co. The total energy
difference between the two different spin orientations was
found to be less than 0.05 p, eV for all four test cases.
Thus this convergence test shows that our method has the
capability to give total energy differences of extremely
high accuracy.

Next we included the spin-orbit interaction and then
performed self-consistent calculations [14] (denoted SO
here) for the mentioned two different spin directions in

bcc Fe, hcp Co, fcc Co, and fcc Ni. One of the prob-
lems one faces in this kind of calculation is that the sam-

pling of the BZ has to be performed with extreme care
and the total energy needs to be converged with respect to
the number of k points used for sampling the irreducible
part of the BZ. To illustrate this we show in Fig. 1 the
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FIG. 1. Convergence of the magnetocrystalline anisotropy
energy for bcc Fe, fcc Co, fcc Ni, and hcp Co as a function
of the number of k points, 10 N(k), in the full Brillouin zone.
The scale to the right refers to hcp Co.

calculated MAE as a function of the number of k points.
We notice that to achieve convergence in the number of k

points, we need about 15000 k points in the full BZ for
bcc Fe, fcc Co, and hcp Co and slightly more for fcc Ni,
around 25 000 k points. However, the number of k points
used in the irreducible wedge for the lowest symmetry di-
rection is around 2000 k points for bcc Fe and 6000 for
hcp Co, fcc Co, and fcc Ni. Although those are large
numbers they are considerably smaller than what had to
be used in the calculation in Ref. [3], where -500000 i(

points in the irreducible part of the BZ were needed for
fcc Ni. Regarding the calculated values of the MAE, we
see from Table I that for bcc Fe and fcc Co we calculate
the correct easy axis [001] and [111],respectively, but
that the magnitude of our theoretical values is lower than
experiment. For hcp Co we also reproduced the experi-
mental easy axis [0001], but again the magnitude of the
calculated MAE is smaller than experiment. For fcc Ni
the agreement between theory and experiment is less sat-
isfactory, and we actually failed to obtain the correct easy
axis [111]. It thus seems that our theoretical (LSDA) cal-
culations account for the MAE of bcc Fe, fcc Co, and hcp
Co fairly well, but fail in reproducing fcc Ni. Previously
[3], the MAE of fcc Ni was calculated for different val-
ues of the number of valence electrons (which is 10 for

Atom

bcc Fe
hcp Co
fcc Co
fcc Ni

'Reference [21].

SO

—0.5
—29
0.5

—0.5

OP

—1.8
—1].0
2.2

—0.5

Experiment

—1.4
—65

8 a

2.7

TABLE I. Experimental [20] and calculated magnetocrys-
talline anisotropy energy for bcc Fe, fcc Co, hcp Co, and fcc
Ni. SO refers to the calculations using spin-orbit only, awhile

OP refers to calculations where both spin-orbit and orbital po-
larization have been included. The units are in p, eV/atom.

Theory
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Ni). This is a sensible test since it is possible that calcu-
lations based on the local density approximation may, for
instance, overestimate the d occupation of the 3d states.
Therefore it is interesting to investigate to what extent
the MAE of Ni depends on small changes in the num-
ber of valence electrons or equivalently how sensitive it
is regarding the exact position of the Fermi energy. We
have performed similar test calculations for fcc Ni by let-
ting the nuclear charge vary around 28, while maintaining
charge neutrality in the system. This is usually referred
to as the virtual crystal approximation (VCA) [15]. We
have calculated the MAE as a function of the number of
valence electrons and find that the resulting MAE is a
smooth function in the interval of 9.8 to 10.1, with no
change of sign. This shows that the problem of obtaining
the correct easy axis for fcc Ni is not likely to originate
from possible errors in the calculated population of the d
orbitals.

The disagreement between the calculation of the MAE
in Ref. [3] and experiment was discussed by Jansen [16].
He concluded that the energy density functional together
with the spin-orbit coupling must contain terms which
depend directly on the orbital moment. In order to
investigate this possibility we added to the Hamiltonian
an orbital-correction term in the same way as has been
described previously [17]. This is an approximate way
to account for Hund's second rule, well known in atomic
theory [18]. In these calculations (denoted OP here) we
have chosen the same k point sets as those we used above,
where we know that the MAE is converged (see Fig. 1).
In Table I we list the resulting values for the MAE and we
note that an enhancement factor of 3 to 4 is obtained for
bcc Fe, fcc Co, and hcp Co when the orbital polarization
is included. The value of the MAE is in good agreement
with experiment for bcc Fe and fcc Co, and in acceptable
agreement for hcp Co. On the other hand, for fcc Ni we
obtained no enhancement of the MAE when the orbital
correlation is taken into account. Thus even after the
inclusion of the orbital polarization our theory still fails
to give the [111]direction as the easy axis for fcc Ni.
In Fig. 2 we display the calculated value of the MAE
for the SO and OP calculations together with experiment.
Note that the MAE of hcp Co is an order of magnitude
larger than for the cubic systems. From the upper panel in

Fig. 2 we see that, except for fcc Ni, the agreement with
experiment is in fact very good for the OP calculation,
since we must remember that these energies are extremely
small quantities and very difficult to calculate.

In Table II we list the calculated and experimental spin
and orbital moments. The theoretical values are given for
the two quantization axes. Note first of all that the spin
moments are insensitive to whether or not we include the
orbital polarization. In contrast, for the orbital moment
the situation is different and the OP calculations give
orbital moments which are enhanced by 40%%uo —60%o. For
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FIG. 2. The magnetocrystalline anisotropy energy in bcc Fe,
hcp Co, fcc Co, and fcc Ni for spin-orbit calculation (SO),
and the orbital polarization calculation (OP), compared to
experiment [20]. The upper panel shows the MAE for bcc
Fe, fcc Co, and fcc Ni. The lower panel includes the result for
hcp Co.

the OP calculations the agreement between theory and
experiment is quite good, for both the spin and orbital
moments. Other theoretical data for bcc Fe, hcp Co,
and fcc Ni, which neglect orbital polarization effects,
typically give orbital moments which agree with the SO
data in Table II. Thus this shows the importance of orbital
polarization effects. This conclusion was previously
reached by Soderlind, Eriksson, and Johansson [19], who
studied bcc Fe, hcp Co, and fcc Ni by means of the
linear muffin-tin orbital method in the atomic sphere
approximation (LMTO-ASA). The presently calculated
spin and orbital moments agree quite well with those
presented previously [19], and from this point of view
the ASA seems to be a good approximation. However, a
new and interesting feature of the present calculations is
that there is a slight anisotropy in the size of the orbital
moment, depending on which spin quantization axis is
used. This effect is most pronounced for hcp Co, where
the change is of the order of 4%. Unfortunately we are
not aware of any experimental data concerning this issue.

When comparing the results of Tables I and II we ob-
serve the following. The inclusion of the OP is important
for both the MAE and the orbital moment itself. Inclu-
sion of orbital polarization effects improves the agreement
with experiment for both properties. For the analysis of
the different terms in the total energy expression, we con-
clude that generally the MAE is dominated by the orbital
polarization term. In addition, we observe that for both
levels of approximation (SO and OP) the calculated easy
axis always has the largest orbital moment. This effect is
already present at the SO level, where the orbital correc-
tion term is absent. This observation leads us to speculate
that a possible way to identify the easy magnetization axis
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TABLE II. Experimental [20] and calculated spin, p, „and orbital moments, p, t, for bcc Fe, fcc Co, hcp Co, and fcc Ni.
The superscript SO refers to calculations using spin-orbit only, while OP refers to calculations where both spin-orbit and
orbital polarization have been included. The calculations have been performed for two different magnetization axes. All
moments are in units of p, ~.

bcc Fe

hcp Co

fcc Co

fcc Ni

[001]
[111]
[0001]
[1010]
[001]
[111]
[001]
[111]

so
S

2.1928
2.1928

1.5898
1.5898
1.6184
1.6184
0.6085
0.6085

so
p, g

0.0485
0.0484

0.0765
0.0762
0.0745
0.0746

0.0475
0.0475

OP

2.1934
2.1934

1.5905
1.5905
1.6187
1.6187
0.6109
0.6109

OP

0.0783
0.0781

0.1232
0.1185
0.1180
0.1182
0.0655
0.0654

exp
p, s

2. 13

1.52

0.57

exp

0.08

0. 14

0.05

might simply be to calculate the orbital moments for the
different directions, and the easy axis is the direction where
the orbital moment is largest.

To conclude, we have demonstrated that it is possible to
perform highly accurate total energy calculations for the
MAE ofbcc Fe, fcc Co, hcp Co, and fcc Ni. We have also
shown that orbital polarization effects are important both
for the size of the orbital moment as well as for the MAE
itself. For bcc Fe, fcc Co, and hcp Co our calculations
give the correct easy magnetization axis and a value of
the MAE which is in relatively good agreement with
experiment. For fcc Ni our calculations give the wrong
easy axis. Since the number of approximations in the
calculations have been reduced to a minimum, we have
to conclude that this remaining failure rejects a limitation
of the LSDA in the case of fcc Ni.
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