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Rate Memory of Structural Relaxation in Glasses and Its Detection by Multidimensional NMR
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A new aspect of the nature of the relaxation rate distribution of n relaxation in glasses is analyzed
for the example of a polymer: How long does a polymer segment remember its relaxation rate? For a
two-state system we describe the rate memory in terms of a single dimensionless parameter. Applying
the theory to multidimensional NMR exchange experiments, the rate memory of a polymer slightly
above its glass transition temperature is determined. The rate memory is near its theoretical minimum,
indicating strong coupling of the individual relaxation modes.

PACS numbers: 64.70.Pf, 76.60.—k

The nature of the glass transition is of great interest for
the understanding of amorphous systems. One of its cen-
tral features is the divergence of the time scale of struc-
tural relaxation (n relaxation) near the glass transition
temperature Ts [1]. The time dependence of the corre-
lation function associated with n relaxation can be de-
scribed by a stretched exponential function, the inverse
Laplace transformation which corresponds to a distribu-
tion Go(1/r) of the relaxation rates. Structural relaxation
in glasses is a cooperative, nonlocal phenomenon [2—6].
With multidimensional NMR experiments [7] on poly-
mers, it has been shown that n relaxation is related to
conformational transitions and reorientations of polymer
segments [8]. The rotational dynamics of chains can be
described by a combination of small angle fIuctuations
and large angle jumps [9]. Since multidimensional NMR
techniques monitor the rotational motion on time scales
between 1 ms and 10 s, information about the n process
can be obtained close to T„[7].

Because of the cooperativity of the n relaxation, the
rotational dynamics of a given polymer chain segment
is governed by a time-dependent potential. Therefore its
relaxation rate, which we define as the probability of a
rotational jump per unit of time, may vary with time.
Although experimental as well as theoretical elucidation
of this problem is essential for understanding the micro-
scopic nature of the n relaxation and hence of the glass
transition, only little progress has been achieved until
now [9—13). This rejects the fact that most experimental
methods are incapable of obtaining this information. In
this Letter we show that due to experimental and theo-
retical progress the rate memory of structural relaxation,
which is a measure of the correlation between the current
relaxation rate of a given polymer segment and its initial
rate at the beginning of the experiment, can now be deter-
mined.

A possible way to obtain this correlation is sketched
in Fig. 1. In the first step, one applies a filter to the
sample in thermal equilibrium with a relaxation rate
distribution Go(1/r) [Fig. 1(a)]. The filter selects all

polymer segments which have not yet relaxed from the
beginning of the experiment until t ~. At t ], only
a narrower distribution G(1/7. ) for slow segments with
relaxation rates 1/r ~ 1/t I [Fig. 1(b)) remains. After
waiting for a variable time t 2, one applies the same
filter in order to check how the distribution of relaxation
rates of the slow subensemble changed during t 2. For
large t 2 this distribution will transform to the equilibrium
distribution Gti(1/r). This is accompanied by a reduction
of the number of segments which can pass the filter
[Fig. 1(c)]. Deviations from Go(l/r) at intermediate t
are a measure of the rate memory.

First, we show that it is possible to realize the scheme
of Fig. 1 by means of multidimensional solid-state NMR
[7,11]. Experimental data are presented for polyvinylac-
etate (PVAc) slightly above Tg Second, w.e develop a
theoretical description, which quantifies the rate memory
of structural relaxation in terms of a dimensionless param-
eter Q. Third, we show that the predictions of the theory
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FIG. l. Schematic presentation of the idea behind the NMR
experiment introduced in the text. In the first step, a slow
subensemble with a narrower rate distribution G(1/7) than
the rate distribution Go(1/r) of the entire sample is selected.
Subsequently, the evolution to Go(1/r) during t 2 is monitored.
The corresponding scheme for a two-state system is shown in
the lower half.
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are consistent with the experimental data. Hence we can
extract the value of g for the rate memory of structural
relaxation in PVAc.

A suitable correlation function of rotational motion, and
hence Go(I/r), can be obtained by correlating the ori-
entation of the system at two different times which is
recorded, e.g. , by two-dimensional (2D) exchange NMR
[7]. It detects reorientations that occur during a mix-
ing time t by measuring the orientation-dependent NMR
frequencies before and after t [14]. For the pulse se-
quence shown in Fig. 2(a) one obtains an echo given
by Fq(t~) —= (cos tuft pc oscu2tp), where the frequencies

and ~2 are the NMR frequencies of the individual
molecules before and after the mixing time, and the brack-
ets are the average over the whole system. Molecules for
which the orientation does not change appreciably during
t (i.e. , ahri = cu2) determine the echo height. If t„ is cho-
sen sufficiently large, the contributions of the segments
which perform a rotational jump average out. The time
dependence of the echo height can often be well described
by a stretched exponential, hence Fq(t) = exp[ —(t/7p)t ]
with P ( 1.

Our goal is to correlate the relaxation rate at two
different times. This requires that the system is monitored
at four subsequent times. The pulse sequence of such a
reduced 4D NMR experiment is shown in Fig. 2(b). The
odd-numbered pulses rotate the magnetization into the x-y
plane perpendicular to the applied static magnetic field
and let it precess freely in that plane, while the even-
numbered pulses rotate the developed magnetization back.
After the first mixing time t &, a slow subensemble with
cu& = ~z generates an echo. By a pulse applied at the
time of the echo maximum this selected magnetization is
stored along the static magnetic field during t 2. Finally,
a 2D experiment with mixing time t 3 is performed on
this subensemble. Using an appropriate phase cycling
scheme, one can achieve that the final echo is proportional
to (cos(art —nr2)tp cos tu3tp cos co4tp). Readers who are
not familiar with multidimensional NMR techniques may
take this four-point correlation function as the starting
point for the theoretical analysis of the experiment.
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This four-point correlation function, normalized to its
value at t 2

= 0, will be denoted as F4(t 2). The dom-
inant contributions to the final echo stem from molecules
which did not perform significant reorientations during
t ] and t 3. It is easy to check that segments with
co J M2 M3 co4 and cu i

= ~2 4 ~3 M4 con-
tribute in the same way to F4(t 2) so that the final
echo is invariant whether or not rotational dynamics
takes place during t 2 (see also Ref. [7], p. 289). There-
fore the scheme of Fig. 1 is fully realized by the re-
duced 4D experiment. We note in passing that this state-
ment does not hold for the correlation function result-
ing from a single setting of the phases of the rf pulses
in Fig. 2(b) (cos ortt„cos tu2tp cos adust„cos ~4tp). The
underlying reason is that (cos pt234) is different from
(cos p tQ) (cos tp34), where the brackets denote the av-

erage from 0 to 2~.
Our sample of PVAc [11]was selectively labeled with

' C (40% enriched) at the carbonyl site, which is a
convenient sensor of structural relaxation. In contrast to a
similar experiment reported earlier, it is then no longer
necessary to separate the contributions of the different
carbon atoms so that it was possible to perform the
time saving echo experiment described above, rather than
recording the corresponding reduced 4D NMR spectra
[11].

The experiments were performed at T = 320 K =
Tg+20K with t~=300p, s and t ] =t 3=16ms
(=—t o). At that temperature, Tt is of the order of
seconds and thus much longer than all time delays in
the 4D pulse sequence. Thus the experimental data are
void of any relaxation effects. In the first experiment
we determined Fq(t) [Fig. 3(a)]. The experimental data
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FIG. 2. Pulse sequences for exchange NMR experiments: (a)
2D experiment with one mixing time and (b) reduced 4D
experiment with three mixing times (see also Ref. [11]). 90'
pulses are indicated.

FIG. 3. The results of the NMR exchange experiments at
T = 320 K: (a) F2(t ) and (b) F4(t,„2) The fit in (a) yield. s
ro ——11 ms (indicated by the dashed line) and P = 0.52. The
solids lines in (b) represent the theoretical curves for four
values of the rate memory parameter Q. Values for ro and
P are taken from (a).
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tioned above and taking into account the normalization by
f(0, t o), one readily obtains

F4(t„,2) = [I + exp( —2I t„,2)]/2.

Note that F&(t,„z) depends exclusively on the exchange
rate I, whereas it is independent of the relaxation rates
K and Kf . The transition between both limiting values
(here, 1 and 1/2) monitors the rate memory in real time.

As a simple quantitative measure of the rate memory,
we consider the dimensionless ratio g = ~,. /I which
counts the number of relaxation processes until a slow
segment changes its rate. It can easily be determined
by comparing the decay of F2(t„) and F&(t,„2) Low.

g values indicate strong coupling between the different
relaxation modes responsible for the dynamic process
under study and hence a fast decay of F4(t,„2) to the
final plateau value. Because of the relation g = tr,. /I
(&,, + I )/I ~ I, the value of g is always larger than
I. Hence one has an absolute scale for the rate memory
parameter.

The concept of rate memory can be generalized to
continuous rate distributions for which the parameter g
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FIG. 4. Schematic analysis of the two-state model. (a) Time
dependence of Fq(t„,) in a semilogarithmic plot. (b) t,»2

dependence of the selected slow subensemble [(i) t„,2 = 0,
(ii) intermediate t„,q, (iii) t,„z ~] and of f (t„,z, t„,3). The
experimental data F4(t ~2) given as f(t„2, t~s = tr»())/f(t„, 2

=
0 t 3 t o), are indicated by solid dots. F2(t,„3) from (a) is
indicated by the dashed line.

can be described by a stretched exponential with 7.o =
11 ms and P = 0.52. In order to obtain information
about the rate memory we determined F4(t 2) for a
number of mixing times t,„2 [see Fig. 3(b)]. As discussed
above, this experiment determines how the relaxation rate
distribution of the slow subensemble approaches Go(1/r).
First we note that our results on PVAc are consistent with
those of Ref. [11] where it was found that for t„,2 = v.o
the slow subensemble is still slow, whereas for t„2 =
100ro it behaves more like the average ensemble. The
new information of our experiment concerns the whole
crossover between both limiting cases. This, for the first
time, allows a quantitative analysis of the rate memory of
structural relaxation.

For a qualitative understanding of the information
contained in F4(t 2), we first discuss a simple two-state
model. In it, at any given moment, a polymer segment
belongs either to the fast or to the slow state. A segment
in the one state may switch with exchange rate I to the
other state, and vice versa. This exchange rate mimics
the fluctuations of the environment that the segment
experiences. If the population of both states is the same,
F2(t ) is given by a biexponential function

1
F2(t ) = —[exp( —tr, t ) + exp( —trft )], (I)

where K, and Kf are the effective slow and fast rates,
respectively [cf. Fig. 4(a)]. It should be mentioned that
for I 4 0, K, and Kf differ from the intrinsic rates k,.
and kf which would appear in F2(t ) if no exchange
were present. One has approximately K, f k ~ f + I .
For a closer discussion see Refs. [15,16]. Let tr, and
1/t o be much smaller than ~f. Restrictions on I are
imposed only indirectly, since for I ~ one always
has Kf = K„ in contradiction to the above assumption.
After waiting for a time t ~

= t 0, all fast components
have reoriented and only slow components remain in their
original orientation. As outlined above, the magnetiza-
tion of that subsensemble is stored during t, 2 along the
static magnetic field. Let z, (t,„2) and zf (t 2) be the time-
dependent populations of the slow and the fast state of the
subensemble, respectively, during the second mixing time
[Fig. 4(a)]. Under the conditions mentioned above, the
initial conditions are z, (0) = exp( —tr, t i)/2 and zf(0) =
0. Then the exchange process between the two states
yields a gradual equilibration of the two populations
via z,. (t 2) = z,. (0)[1 + exp( —2I t, 2)]/2 and zf(t q) =
z, (0)[1 —exp( —2I t 2)]/2 [cf. Fig. 4(b)]. The factor of
2 can be rationalized by solving the rate equations which
govern the exchange between the slow and the fast
state. This population is the initial condition for the
final echo experiment of the full reduced 4D experi-
ment. The final echo height is given by f(t 2, t 3)
z, (t q) exp( —~, t 3) + zf(t~2) exp( —

theft

3) The depen-.
dence of the echo height on t 2 and t 3 is displayed in
Fig. 4(b). In our experiment the final echo is propor-
tional to f(t 2, t 3

= t t)). Under the conditions men-
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can be introduced in a very general way [16]. Thus,
even for general functions Fz(t ), we can readily generate
theoretical decay curves of F4(t z) in dependence of the
parameter Q. For the two-state case presented above, the
relation Q = t~, /I follows from general theory. One can
show that, in contrast to the simple limit presented above,
the lower limit of Q can be as low as 1/2.

If Fz(t ) is fitted by a biexponential function and

F4(t 2) is determined according to Eq. (2) or if instead
F4(t 2) is calculated according to the general formal-
ism, identical results are arrived at, taking into account
the experimental uncertainties. The experimental data
in Fig. 3(b) agree very well with Q = 2.1. Hence for
PVAc, after about two relaxation processes, no informa-
tion about the dynamical history is left, and the rate mem-
ory is only twice as large as its theoretical minimum. This
indicates a very strong cooperativity of n relaxation.

A related aspect concerns possible spatial dynamical
heterogeneities around the glass transition, i.e., extended
clusters of slow segments. A recent dielectric relax-
ation experiment on quinoxaline in a glass-forming sol-
vent gave the first indications that the existence of hetero-
geneities involving more than 300 molecules can be ex-
cluded [17]. In contrast, simulations of the spin-facilitated
Ising model [18] indicate the existence of spatial hetero-
geneities. Our results cannot settle this question, but it
seems plausible that large spatial heterogeneities are only
consistent with a large rate memory. However, a relation
between the rate memory and spatial heterogeneities has
yet to be established.

In summary, we have introduced the rate memory
of glasses as a new experimental observable. For the
example of PVAc we have shown that the rate memory,
quantified by the parameter Q, can be determined by
applying multidimensional exchange NMR. The low
value of Q indicates that a strong coupling between
different relaxation modes is responsible for n relaxation.
It has to be noted that multidimensional NMR is restricted
to probing dynamics much slower than the processes
considered in the mode coupling theory [19]. By virtue
of multidimensional EPR spectroscopy, [20] as well as

by computer simulations, this time gap can be reduced.
Work along this line in progress.
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