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Structural Glass Transition and the Entropy of the Metastable States
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The metastable states of a glass are localized and counted by adding a weak pinning field that
explicitly breaks the ergodicity. The entropy of the metastable states, that is, the logarithm of their
number, is extensive in a range of temperatures T,. ~ T & T, only. It is argued that T,. and T,. are
the ideal calorimetric and kinetic transition temperatures, respectively. An explicit computation of the
metastable states entropy for a (@ ) model is given.
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During the last decade, a great deal of work has been
devoted to the understanding of the glass transition. Ba-
sically, two different approaches have been employed to
tackle this problem. On the one hand, the density func-
tional theory (DFT) [1] is an equilibrium approach where
the static density field obtained through the minimization
of a free-energy functional becomes inhomogeneous be-
low the structural glass transition temperature. Experi-
mentally, however, the glass transition temperature Tg
depends on the cooling rate [2]. Therefore, it does not
seem to be related to a well-defined equilibrium transition
as predicted by DFT. On the other hand, the mode coupling
theory (MCT) [3], using a self-consistent treatment of the
microscopic dynamical correlation and response functions
in the liquid phase, predicts that the onset of the glassy state
is due to a kinetic transition at a temperature T, higher than

Tg. The quasibreaking of ergodicity at T,. coincides with
the appearance of nonvanishing density fluctuations, the
system becoming partially frozen in metastable states with
very large relaxation times. Though MCT strengthens the
intuitive feeling that the presence of metastable states in
the free-energy landscape is responsible for the dynamical
arrest arising at the glass transition, the precise relationship
between the dynamic and static descriptions of glasses is
still to be established. This Letter is an attempt to clarify
this important issue.

As was shown some years ago, the connection between
the dynamic and the static approaches can be made more
transparent in the special case of mean-field spin glasses
[4,5]. It has indeed been found that the models exhibiting
a discontinuous replica symmetry breaking [6] at the static
transition temperature T, present a dynamic transition
at a higher temperature T, below which equilibrium is
never reached [4,5,7,8]. In addition, the temperature T,
whose significance is a priori purely dynamical may be
related to the equilibrium free energy using the Thouless-
Anderson-Palmer (TAP) approach [7,9]. In the TAP
formalism, one writes the set of equations that the mean-
field local magnetizations M(x) must satisfy. The correct
replica symmetric (RS) free-energy density is given by
the homogeneous "liquidlike" solution M(x) = M for
high temperatures T down to T, . Surprisingly enough,

1
F~(P) = ——log d@(x)expi —PH[rt ]). (1)

For the usual ferromagnet below the Curie temperature,
the physical decomposition of the Gibbs free energy into
two states of opposite rnagnetizations may be obtained by
imposing a small (but finite) external field aligned along
the up or down directions. In the case of disordered sys-
tems or glasses, there is, however, no a priori privileged
direction towards which the field P(x) will point once

in an intermediate range T, ~ T ( T„ the same RS free-
energy density is also achieved by the weighted sum of
an exponential number of space-dependent solutions M(x)
with a higher free energy [4]. At T, , a rather subtle
transition takes place: there appear an exponential number
of spin-glass-like metastables states in the free-energy
landscape leading to a complete dynamical freezing of
the system while at the same time the free energy itself
does not show any singularity since the equilibrium state
remains nonglassy. To what extent these results may be
applied to structural glasses is a crucial question [4,5, 10].

In this Letter, we shall present an alternative and purely
thermodynamical method to investigate the metastable
states in the equilibrium free-energy landscape in any
glassy system. More precisely, we shall define the entropy
Sh, as the logarithm of the number of these "hidden"
metastable states and present a general scheme to compute
this quantity. In the case of mean-field models, the results
of the TAP approach are recovered: Si„ is extensive in
the range of temperatures T, ( T ( T, only. Since our
approach is a priori valid beyond the mean-field level, we
shall argue that the same holds in finite dimension and
that these two temperatures then correspond to the ideal
calorimetric and kinetic temperatures, respectively. An
example of the calculation of the metastable states entropy
Sz, and the glassy correlation functions inside these states
will be given for a (P ) model.

Let us start with a theory of a field P(x) defined by
a Hamiltonian H[@]j For simplicity, we shall use scalar
notation though x spans a D-dimensional space and @(x)
can be an N-component field. The equilibrium Gibbs free
energy at the temperature T = 1/p is given by
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stuck in a metastable state. We can nevertheless choose a possible direction, given by another field o.(x), and compute
the free energy of our system when it is weakly pinned by this external quenched field

1
Fq[~. g. P] = ——»g d@(x) exp P—H[@] ——

2
dx[o-(x) —

@(x)] (2)

where g ) 0 denotes the strength of the coupling. This free energy (2) will be small when the external perturbing field
o.(x) lies in a direction corresponding to the bottom of a well of the unperturbed free energy (1). Therefore we should be
able to obtain useful information about the free-energy landscape by scanning the entire space of the configurations o.(x)
to locate all the states in which the system can freeze after spontaneous ergodicity breaking (g ~ 0) [11]. According to
this intuitive idea, we now consider the field o.(x) as a thermalized variable with the "Hamiltonian" F@[o,g, P.]. The
free energy of the field o. at inverse temperature Pm where m is a positive free parameter therefore reads

1F (m, P) = lim — logg-0' i Pm
do-(x) exp( Pm—F@[o,g, P-]) (3)

When the ratio m between the two temperatures is an integer, one can easily integrate o.(x) in Eq. (3) after having
introduced m copies @~(x) (p = 1, . . . , m) of the original field to obtain the relation

1F (m, P) = lim — log
g 0 ( Pm p=l

d@~(x) exp. —P PH[P~]— dx[@p(x) —
@ (x)]

up to an irrelevant additive constant. The meaning of
relation (4) is clear. We have to study the statics of m
interacting systems, with an attractive coupling between
themselves. An alternative formulation of the intuitive
idea expressed above is then that several coupled systems
evolving in the same free-energy landscape will. have a
tendency to "condense" in the same metastable states
since their relative distances in such states are smaller
than in the liquid state. However, the original free-
energy landscape of a single system is recovered only
in the limit I ~ 1, that is, when the pinning field a.
is annealed at the same temperature as @: F@(P) =
F (m = 1, P) from (4). The basic idea of this Letter is to
decompose F (m = 1, P) into its energetic and entropic
contributions to obtain

S,(P) = P[F.,(P) —F~(P)],
where Sh, (P) = P BF~/Am~I=i and Fh, (P) =
&(mF )/Bm~ =i are, respectively, the entropy and
the "internal energy" of the field a. . The subscript "hs"
stands for hidden states. We stress that Si„(P) and
pz BF@/6p, which is the entropy of the field p, are two
distinct quantities with different physical meanings.

To get some insights into the significance of Eq. (5), we
shall now turn to the particular case of disordered mean-
field systems and show how it rigorously gives back the
analytical results derived within the TAP and dynamical
approaches [4,7,9, 10,12]. We shall then analyze the
physical meaning of identity (5) for the general case of
glassy systems.

The free energy F@(P) of a mean-field disordered sys-
tem is a self-averaging quantity which may be com-
puted using the replica trick [6] to end up with F~(P) =
lim, 0Extl~. bi+~(fq'")). q'" = f dx p'(x)p" (x) are the
overlaps between the n replicas. Above the static transi-
tion temperature T„ the physical saddle point of +~ is RS
q"~" = q. If we now compute the free energy (3) of

the field o. by introducing n replicas and averaging over
the quenched disorder, we obtain from Eq. (4) the same
free-energy functional +@ where the number of replicas
P'~(x) now equals n X m and with an additional term
(g/2m) g;, P'"~

i q' ' . This interaction term explic-
itly breaks the symmetry of permutations of the n X I
replicas [13] into n groups of m indistinguishable repli-
cas. Consequently, even above T„ the simplest ansatz one
can resort to contains at least one step of replica symmetry
breaking (RSB), which reads

F (m, P) = Ext+y(qo, qi, m, P), (6)
q0, ql

when g ~ 0 . As a result of the introduction of the field
cr, we have obtained the usual one-step expression of the
free energy but without any optimization over the free pa-
rameter m, which we can choose at our convenience (see
[14]for a related case where o. acquires a simple geometri-
cal interpretation). Letus now send m ~ 1 while T ) T,
The saddle-point equation over qo becomes identical to
the RS equation for q. Thus qo = q and we find F„(m =
1, P) = F~(P) = Extq+~(q, P) as expected. Defining
V(qi): P 8+@/Rm (qp = q, qi, m = 1, P), the opti-
mization condition over the second overlap implies that q ~

must be a stable local minimum of V. The entropy of rr
is then Sh, = V(qi). It turns out that V defined above
is equal to the potential recently introduced in mean-field
glasses [10,15] to compute the temperature T, at which the.
relaxational dynamics exhibits a drastic slow down [4,7] as
mentioned in the introduction. The typical behavior of the
entropy Sh, (P) is as follows. At high temperature, there
is only the RS solution qi = q, Sh, = 0. At a given T, ,
there appears a nontrivial saddle point qi [which shifts the
free energy (6) by an extensive amount [13]and must then
be preferred], and the entropy Sh,. shows a first order jump.
It has been recently verified in the particular case of the
random orthogonal model [12] that the entropy S&„defined
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here coincides with the logarithm of the number of TAP so-
lutions [16],which is sometimes called complexity or con-
figurational entropy [4,17]. When T decreases, SI„goes
down and vanishes at T, . The identity Sh, (T ( T,) = 0
is mathematically equivalent to the usual optimization
condition of +@ with respect to m below the RSB transi-
tion temperature. Therefore, this optimization condition,
whose meaning has always been far less clear than the op-
timization with respect to the overlaps qo and q& [6], may
be interpreted as the absence of an exponential number of
contributing states below T,

The significance of formula (5) may now be discussed
for glasses in general. At high temperature, the pinning
due to o. is not sufficient to break ergodicity: Fh, . (p) =
F~(p) and Sh, (p) = 0. Physically, there exists only
one state. When the temperature goes down, there may
appear some barriers that separate an exponential number
of metastable states of free energies higher than the true

F@(P). As long as the number of these states does not
compensate for their small weights, they are not "seen"
by the Gibbs partition function. At some temperature
T„ their number e~" becomes large enough to make up
for the difference of free energies and the identity (5)
expresses this compensation mechanism. In a system with
finite range interactions, the ergodicity breaking taking
place at T, is not complete. The partial freezing inside
the metastable states makes the dynamics very slow but
does not forbid some microscopic changes (the so-called
activated processes) [3], allowing the system to relax
towards the liquid equilibrium state by visiting more and
more states and diminishing its free energy [4,10]. Thus,
no sharp transition occurs at T„and it is reasonable to think
that T, should coincide with the ideal kinetic transition
temperature predicted by MCT since it detects the first
occurrence of glassy states having a nonvanishing weight
in the partition function. Below T„F@(P)comes from the
superposition of many states with high free energies. The
number e " of these hidden states decreases since their
free energy Fh, , gets closer and closer to the true value
F@. At a given temperature T„ these states cease to be
metastable since their free energy F~, equals F@, implying
from (5) that the entropy Sh,. is not extensive anymore [17].
The true thermodynamical transition therefore takes place
at T„which should correspond to the ideal calorimetric
glass transition temperature [18]. Below T„ formula (5)
cannot hold any longer since it would predict a negative
configurational entropy of metastable states having a lower
free energy than F@. Physically, one expects that freezing
into a small (nonexponential) number of states will still
occur and that Sh, (T ~ T,) = 0. As a consequence, the
effective temperature of the states, that is, of the field o,
becomes different from the temperature of the field @:their
ratio m is determined through the condition that the hidden
states' entropy vanishes. More precisely, the freezing
implies that the o's act more and more as a quenched
disorder for the field P, that is, their temperature becomes
higher than T and m lower than one [19]. Furthermore,

let us notice that if Sh,. is already nonextensive at T, ,
then T, and T, must coincide. This is what happens for
systems with a continuous RSB transition [6] where the
intermediate phase T,. ( T ( T,. is skipped. Such sys-
tems seem therefore to exhibit a less generic behavior [4,5].

Formula (4) is a convenient starting point to compute
Sh, in the case of systems without quenched disorder [11].
We begin with m uncoupled copies P~(x) of the model.
The matrix of the correlation functions of the global system
is then a priori diagonal: &P~(x)P (y)) = 6~ G(x —y).
For simplicity we shall assume that in the liquid phase the
average value of the field &P(x)) is equal to zero. The
onset of the glassy phase will be characterized by the ap-
pearance of many metastable states n, each of them hav-

ing a weight 2, in which the expectation value &@(x))
does not vanish anymore, and therefore by the emer-
gence of nonzero off-diagonal propagators Gh, . (x —y) =
Z. &-&0( )).&4(y)). = &0'( )0'(y))(S ~ ~) n the
limit m ~ 1 [20]. As discussed above, the diagonal corre-
lation function G(x —y) = g 'P &P(x)P(y)) is sim-

ply obtained from the calculation of F~(p) for a single
system (m = 1). The computation of F (I 4 1, p) is
technically more delicate since a perturbative calculation in

the presence of a weak coupling g between the copies will
not generate (in the limit g ~ 0) an effective correlation
Gq,.(x —y) 4 0 and will not detect the first order glass
transition. We shall now present a simple self-consistent
calculation that permits us to obtain Sh, and Gh, (x —y).

The example we shall consider is a O(N) model with

a quartic interaction: H[p] =
2 f dx dy @(x) (—6 +

v)p(y) + (1/4N) f dx[@(x)z]2. We do not expect this
model to exhibit a glass transition for large N, but the
small N case may have an important physical interest;
e.g. , polymers that are related to N ~ 0 [21) are known
to have a glassy behavior at low temperatures. The
free energy F may be computed using a self-consistent
screening approximation [22]. This 1/N expansion is
exact to order 1/N and contains a partial resummation of
an infinite class of diagrams and is thus well defined in

the whole range 0 ( N ( ~. One obtains F (m, N, v)
as an extremum over the set of all propagators G(k) and

Gh, . (k) [20,23]. When I ~ 1, the diagonal propagators
are solutions of the implicit equations

G(k)
+v+ 2

dq G(q) +— G(k —q)
q

1 + II(q)
'

(7)

where II(k) = f dq G(k —q)G(q). Equation (7) is iden-
tical to Bray's original result as expected [22]. The entropy
of the metastable states then reads

Sh,.(N) = Ext
a„,(u) Gk N 1+Hk

(8)

where IIh, . (k) —= f dq Gh, . (k —q)Gh, . (q) and s(x) =-
—x —log(1 —x). The numerical resolution of the
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saddle-point equations steming from Eqs. (7) and (8) in
dimension D = 3 (on small lattices) seem to show that
a nonzero set of propagators Gh, may appear when N
becomes lower than a given N, that depends on the bare
mass v. Despite different choices of Ij, we have always
found N, & 1. A more careful analysis of the equations
would, however, be necessary. In dimension D = 0,
the equations for G and Gh, may be solved exactly, and
we find that there exists a first order transition at some
small enough critical value of N. One can show that
N, is always lower than 1. If, for instance, we choose
the bare mass v = —0.2, St„ is equal to zero when
N ) N, = 0.65 and jumps discontinuously to 0.31 at
the transition with Gh, /G = 0.91. The entropy then
decreases smoothly when N gets smaller and vanishes
at N, = 0.54 where Gt„/G = 0.96. We notice that the
ratios N, /N, and Gh, /G are remarkably similar to the
values of T, /T, and qi, which may be found in mean-field
disordered models [7,8, 12]. Though one must consider
this result with caution due to the approximations made in
its derivation, it seems that the free-energy landscape of
the (P ) model in zero dimension may be complicated at
small N (N ( 1), even above the ferromagnetic transition
temperature. This is strongly reminiscent of the random
field Ising model that is recovered here if N = 1 and g
keeps a finite value [23].

A deeper understanding of the mechanism of the
quasiergodicity breaking occurring in the range T, (
T ( T, is still to be found in finite dimensional systems
[18]. We hope that the description of the complicated
free-energy landscape sketched in this Letter [24] will
be of some help to understand the dynamical processes
taking place in structural glasses [4,10].
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