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A simple channeling theory based on the atomic column approximation by Van Dyck et al. is used
to relate the contrast of lattice images to the local concentrations in disordered alloys. The theory is
shown to account for recent observations in pseudobinary semiconductor compounds and in metallic

alloys.
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High resolution electron microscopy (HREM) is an in-
valuable tool to analyze crystalline structures, but several
difficulties arise when trying to make it quantitative. Some
of them are related to the experimental conditions: nature
of the samples, optical aberrations, etc. At a more fun-
damental level, the strong interactions of electrons with
matter prevents one from using the simple first order Born
approximation (or kinematical theory) which is gener-
ally sufficient for treating neutron or x-ray diffraction [1].
Several different but equivalent theoretical and numerical
methods have been devised to take into account multiple
scattering of electrons. In the case of simple crystals, i.e.,
of elemental solids or of completely ordered compounds,
Bloch theory can be used, and this basically reduces the
problem to one similar to that treated in electron band the-
ory. In practice, efficient numerical codes using so-called
multislice techniques have been developed and are widely
used [2,3].

Much less is known about disordered systems. We
are dealing here with substitutionally disordered alloys on
a fixed underlying lattice, and we would like to know
whether lattice images can provide at least semiquantita-
tive information on the concentration of atomic columns.
Except for very thin samples, the relation between the elec-
tronic density at the exit plane and the atomic potentials is
not simple, but several attempts have been made to define
experimental conditions for which it can be quasilinear.
There are several methods for doing that. The first one is to
simulate lattice images with the available multislice codes,
using sufficiently large boxes or real space techniques, but
then physical insight is almost completely missing. An-
other approach recently put forward by Ourmazd et al. [4]
is to make use of pattern recognition procedures to ana-
lyze the images. By correlating the input and the output
for several model systems it is possible to define the con-
ditions for which reliable interpolation procedures can be
used. This is a quite useful tool but, of course, it does not
provide explanations for the observed behaviors. Finally,
other image processing algorithms based on a simple per-
turbative treatment of disorder have also been discussed by
De Jong and Van Dyck [5].

Before applying to HREM the efficient techniques
which have been developed for calculating the electronic
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structure of disordered systems [6], simple models are
obviously desirable, and the basis for them is available.
It has been observed for a fairly long time now that when
the incident electron beam is parallel to well separated
atomic columns channeling along these columns occurs
up to about a few tens of nanometers. The equations
describing electron propagation can then be simplified
considerably, which allows one to obtain very attractive
semiquantitative descriptions. This theory called the
atomic column approximation (ACA) has been developed
with success by Van Dyck ef al. [7] but has not been
applied so much yet to the treatment of disordered alloys
(see, however, Ref. [8]).

In this Letter we present such a treatment. Using the
simplest formulation, the wave function at the bottom of
an atomic column containing different types of atoms
is shown to contain a phase factor directly related to
the numbers of these atoms in the column and to
their scattering strengths. Fluctuations of local atomic
concentrations therefore induce fluctuations of the phase
whose magnitude increases when the thickness and the
atomic contrast increase. This has simple and important
consequences for the analysis of lattice images, even
if the additional effect of the aberrations due to the
HREM imaging process is not considered here. Some
applications to semiconductor and metallic alloys will be
presented.

We first recall the required formalism. For high energy
electrons, backscattering can be neglected and the relevant
Schrodinger equation is conveniently written as a two-
dimensional evolution equation where the thickness z
plays the part of time [9],

ia/ozlgy = Hly.),  H =(H — q})/2ki. (1)

q: and k} are the transverse and longitudinal components
of the wave vector k; of the incoming electron; H =
—A, + V where A, is the two-dimensional kinetic en-
ergy 0%/9x*> + 92/9y? and V(p, z) is the potential energy
at point r = (p, z). In principle it depends on “time” z,
but in many cases it can reasonably be replaced by its pro-
jection along the z axis. At least this can be done if the
projection concerns a thin slab of thickness d. Typically
for all the simple structures considered in the following
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(fcc-based alloys, zinc-blende structure) d will be taken
to be equal to the size of the unit cell along the z axis,
i.e., between 0.2 and 0.6 nm. V(p, z) is then replaced by
V(p) = fg V(p,z)dz/d. The formal integration of the
evolution equation for the slab is then obvious,

lg.) = Ulz,0)l¢o), U(z,0) = exp(—i Hz). (2)

In HREM the initial state is a plane wave |¢p) = |q;),
and usually the incident beam is taken along a high
symmetry axis (symmetric Laue conditions, ¢; = 0). If
the projection operation is repeated in successive slices
0,21),(z1,22), ..., (zp-1,2p), the full evolution operator
U(zp,0) is equal to Ul(zp,zp-1),...,U(z1,0) where
the corresponding two-dimensional potentials V), and
Hamiltonians H, are used in each slice. Now let |a)
and g, be the eigenstates and eigenvalues of the Hamil-
tonian H, H|a) = g,|a) so that H |a) = y.|a) with
Yo = [eo — (:)?]/2kF. Within a slice the evolution op-
erator can be written U(z,0) = >, |a)exp(—i yoz) (|
and the wave function is given by |¢,) = >, Cq X
exp(—iyaz)la), where C, = («|0) is the excitation
coefficient of state |a).

In the case of periodic structures, the Bloch theorem
applies and we can calculate two-dimensional band struc-
tures [10]. In all cases, whatever the atoms, whatever
the acceleration voltage, it is found that there is one very
localized bound 1s state per column [7,11]. In symmet-
ric Laue conditions, the state is strongly excited and the
only other excited states have energies close to zero. For
well separated atomic columns the localized states do not
overlap so that the above picture is also valid for a slice
of disordered alloy. It is then convenient to separate out
these states from the others. Therefore let P, be the pro-
jector on the 1s core states, P, = >, |n){n|, where the
two-dimensional states of columns #n, |n), are assumed to
form a set of orthonormalized states. Then

U(z,0) = > e " ny(n] + (1 — Pe 2 (3)

where vy, is the 1s bound state energy of column n. Now,
since the other excited states have energy close to zero,
we can replace the second exponential by unity provided
the thickness z is not too large. Finally, using the
orthogonality relationship (n|m) = 8,,,, the evolution
operator corresponding to the ACA can be written as

=Tlv.=1+>w. -,

U, =1+ (e7'7% = Dn){nl. )

UACA

Within this approximation all column operators U,
commute, all columns are independent, and channeling is
perfect. This simple approximation reproduces fairly well
the dynamical effects as calculated from full calculations.
This is illustrated in Fig. 1 in the case of the NizAl
ordered compound. In this example the atomic columns
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FIG. 1. Variation of intensity with sample thickness for the
(000) transmitted beam and for the (100), (110), and (200)
diffracted beams in NizAl. The zone axis is [001] and the
accelerating voltage is equal to 400 kV. Full line: Bloch
calculation using 400 plane waves; dotted line: ACA result.

are pure Ni or pure Al columns so that projecting the
potential over the unit cell is equivalent to projecting
over the whole crystal. In this calculation, the previous
formula has been slightly modified by introducing a small
constant shift of the energy of the bound states, which is
easy to justify; more details will be given elsewhere. It
is clear that the ACA is very good up to at least 30 nm.
The ACA would not be so good with heavier elements for
which other bound or quasibound states can appear.

Let us now treat disordered alloys. To do that, we make
repeated use of Eq. (4) for the successive slices labeled by
p. In general the part of column # contained in slice p
denoted (n, p) contains a single atomic site, which will be
assumed in the following, but this is not a necessity. The
ACA evolution operator U,, corresponding to column 7 is
then written as

U, =UN...ur...ul,

U =1+ (e 7% = Dln,p)n,pl,  (5)

where |n, p) is the localized state of the atom at site (n, p)
and N is the number of slices. The full ACA evolution
operator is given by UACA =T, U, =1 + >, (U, — 1).
The localized states are different for the A and B atoms
of a binary alloy A.Bj—., so in principle the order of
the operators in the above formula does matter, and the
wave function at the exit plane of the sample depends
not only on the numbers Nr/:‘(B) (N4 + NB = N)of A (B)
atoms, but also on the detailed arrangement of the atoms
in the column; this leads to the so-called top-bottom effect
[8,12]. In fact, a first simple approximation is to take
into account the difference between the energy levels
Ynp = y* or yB, depending on the occupation of site
(n, p), while neglecting the difference between the 1s
wave functions. This is the approximation currently made
in the theory of disordered alloys treated within the tight-
binding approximation. This approximation is certainly
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reasonable when |y4 — %] is not too large compared
to the mean value (y) = cy* + (1 — ¢)y8. Assuming
then a single mean localized state, we can drop the label
p and use a single state |n) per column, and finally in this
simplified ACA scheme (SACA), the evolution operator
is given by

UACA = 1+ (77N — D iny (. (©)

Note that this approximation is not equivalent to the
projected potential approximation: the mean 1s level (y)
is not identical to the 1s level of the mean potential;
in practice they are not so different. We have therefore
shown that the validity of the ACA implies to some extent
the validity of the projected potential approximation for
disordered alloys. Top-bottom effects are not expected
to be so important except for heavy elements and large
thicknesses. This is actually what is observed in some
recent numerical calculations [8,12].

Now let 6, denote the phase factor in Eq. (6) and let
wl5(p) = (pln) be the 1s wave function centered on col-
umn n. The electronic density, or intensity, at the exit
plane I(p,z) is given by {p|U(z,0)lg = 0)|>. Neglect-
ing the overlap between different 1s wave functions, the
intensity at the exit of column 7 is given by

L(p.z) =1-2C"y,*(p)
X [1 = C¥y°(p)] (A = coshy), (7)

where the excitation coefficient C!* is
[dp ¢} (p) and the phase 6, can be written
0, = (Npy* + NZyP)d = [eav? + (1 = u)7Pz,
(8)
where c¢,, is the concentration in A atoms of column n,
cn = NZ/N. 1Tt can easily be shown that the factor in
front of 1 — cosf, is negative at the center of the column
so that maximum contrast is obtained when cosf, = —1.
Consider now a completely disordered alloy. The
probability distribution of the number of A atoms in the
columns is binomial, with variance Nc(1 — ¢), and so is
the probability distribution of € considered as a stochastic
variable whose possible values are the 6,,. Its mean value
is (#) = (y)z and its variance o is given by
o = Ne(l = o) (v* = ¥PPd?, ©
but we are interested in the probability distribution of
cosf,, which makes a big difference. Actually when
N is very large the distribution of § becomes Gaussian,
but its width o is much larger than 27 so that the
distribution of #(mod27) tends to a constant, independent
of the concentration, the distribution of # = cosé# tending
to 1/7y/1 — u?>. There is no central limit for the
intensity distribution. When o is small, the distribution
is a genuine discrete distribution, but the phase is small
anyway, and we recover the weak phase object limit; the
intensity contrast is proportional to 62.
The interesting situation occurs in the intermediate
case, when o is large enough for the Gaussian limit to

equal to
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be valid while being small compared to 277. In such a
situation we expect a distribution of cosf# centered on its
mean, (cosf) = cos(@)exp(—c2/2). Its variance, i.e., its
second order cumulant, is given by

(c0s20). = (1 — e “)[(1 — e 7)/2 + e 7 sin%(0)]
=~ ¢?sin*(#) when o — 0. (10)

The third centered moment is of order o when ¢ is small
and has the opposite sign of cos(f). The distribution
is evidently particular and asymmetric when sin{(#) = 0,
i.e., when the contrast is minimum or maximum, cos{f) =
*1 (see Fig. 2).

From this discussion it is clear that the intensity can
be related to the mean concentration ¢ when o is small
compared to unity, which means that the thickness as well
as the “atomic” contrast |y4 — 32| should not be too
large. The atomic contrast depends on the electronic form
factors, on the lattice parameter, and on the accelerating
voltage, but the last dependence is weak. Note also that
the situation where the contrast is the largest, sin(d) = 0,
is more favorable. The mean deviation o is therefore a
very nice measure of the importance of dynamical effects.
More precisely, o | sinf| measures the fluctuations of the
intensity induced by the concentration fluctuations. When
it is of the order of unity we expect the intensity to display
spots of almost random intensity, with a preference for the
less and more intense spots. For smaller values of o we
expect on the contrary a fairly uniform intensity reflecting
the value of the mean concentration.

We can now treat the case of an interface between re-
gions of different concentrations. Assume, for example, a
planar interface such that a mean concentration ¢, can be
defined for each plane parallel to the interface. The rele-
vant variance as well as (§) now depends on n. If o-ﬁ is
too large, the previous discussion shows that the interface
would hardly be visible because of the very low signal-
to-noise ratio. If o, is small enough, the electronic den-

<0>=075n

<0>=m/2

Probability Distribution
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cos 0
FIG. 2. Probability distribution of cosf for (#) = 7 /2 and

(@) = 0.757, assuming a Gaussian distribution for #, with
o = 0.3.
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sity will reflect the local concentration through cos(6,) =
cos[c,y4 + (1 — ¢,)yP]z. This is a nonlinear relation-
ship except when the variation of ¢,(y4 — v%)z along the
concentration profile is small compared to 27r.

Let us apply this analysis to some cases treated recently.
Consider first the concentration gradient in Al.Ga;-.As
[4]. Using simple two-dimensional atomic calculations
for an accelerating voltage of 400 kV we obtain yA! =
—0.12 nm~! and y%® = —0.30 nm~!. Taking the thick-
ness z = 17 nm (N = 30) yields o = 0.56+4/c(1 — ¢) =
0.28 = 277 /20. We are therefore in a very favorable
situation, and the intensity should respond reliably to con-
centration variations. In the case studied by Ourmazd
et al. the concentration varies between 0 and 0.4. This
corresponds to phases 6 equal to 5 and 3.8, respectively,
and the response should be quasilinear, as found by these
authors. This is also in agreement with the detailed analy-
sis of these semiconductor alloys by De Jong and Van
Dyck [5]. Their theoretical analysis is based on a per-
turbation treatment of the concentration fluctuations which
reproduces perfectly our general formulation in this limit.

We now consider a more problematic case where some
heavy gold atoms replace aluminum atoms in NizAl.
The atomic contrast is large; at 400 kV we find yA! =
—0.24 nm™!, yA" = —2.10 nm~!. For a thickness of
17 nm we find o = 4.55\/c(1 — ¢) = 2.27 = 7. This
phase fluctuation corresponds to a concentration fluctua-
tion of gold atoms y/c(1 — ¢)/N about 7%. Fairly small
concentration fluctuations will therefore completely re-
verse the contrast. Such effects have been observed re-
cently [13]. Actually for such heavy atoms and such a
thickness the SACA scheme and the ACA itself begin to
breakdown, but preliminary calculations clearly indicate
that the previous picture is not strongly altered.

The present theory provides very simple criteria to un-
derstand many experimental results in disordered alloys.
Several extensions and other applications can be consid-
ered and will be presented elsewhere. Deviations from
the SACA can be dealt with. This does matter when one
is interested in the analysis of diffracted beams and of dit-
fuse scattering. Finally the influence of the transfer of the
microscope must be taken into account to develop a full
quantitative theory.
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tions as well as many fruitful discussions with D. Gratias
and A. Loiseau are gratefully acknowledged.
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