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Stationary Shear Flow in Boundary Driven Hamiltonian Systems
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We investigate stationary nonequilibrium states of particles moving according to Hamiltonian
dynamics with Maxwell demon "reHection rules" at the walls. These rules simulate, in an energy
but not phase space volume conserving way, moving boundaries. The resulting dynamics may or
may not be time reversible. In either case the average rates of phase space volume contraction and
macroscopic entropy production are shown to be equal for stationary hydrodynamic shear Hows, i.e. ,

when the velocity distribution of particles incident on the walls is a local Maxwellian. Molecular
dynamic simulations of hard disks in a channel produce a steady shear How with the predicted behavior.

PACS numbers: 51.10.+y, 47.40.Dc, 51.90.+r, 66.20.+d

Stationary nonequilibrium states (SNS) of macroscopic
systems are usually maintained by external inputs at their
boundaries. Since a full microscopic description of such
inputs is not feasible, it is necessary to represent them by
some type of modeling. An important open problem is
how much of the universality, or insensitivity to bound-
ary conditions, exhibited by equilibrium systems (not in-
side a coexistence region of the phase diagram) remains
true for SNS of macroscopically stable nonequilibrium sys-
tems, e.g. , fluids in regimes of laminar flow. While there
is ample experimental evidence that the gross macroscopic
behavior of such systems is determined by the unique so-
lution of the compressible Navier-Stokes equations, with
specified boundary conditions on the hydrodynamic veloc-
ity and temperature [1], different modelings of the exter-
nal drives [2,3] produce very different types of microscopic
states [4—7]. Thus stochastic thermal boundaries generally
lead to statistical ensembles absolutely continuous with re-
spect to Liouville measure, while deterministic themostat-
ting schemes yield singular measures [3—7].

While it is reasonable to expect that these differences
do not have any consequences for the bulk properties
of such systems, i.e., an equivalence of ensembles such
as can be proven for systems in equilibrium, it is far
from clear how to characterize the essential features of
nonequilibrium stationary measures and just how far the
universality of SNS goes [5,7]. This question and a desire
to have a physically reasonable microscopic dynamical
model of SNS motivates the present work in which we
investigate various models which produce shear fIow in
a channel with walls perpendicular to the y axis and
periodic in the x direction. Our models, which are
deterministic, differ from bulk thermostatting schemes
involving specification of local macroscopic functions, in
that the microscopic dynamics in the bulk of the system
are Hamiltonian. To induce shear flow the reflections at
the walls are specified by a function tit = f(P) where

and —P, 0 ~ @,P ~ 7r, are the angles which the
incoming and outgoing velocities at the top (bottom) wall
make with the positive (negative) x axis, the direction of
the "wall velocity" induced by these rules, for P ~ P.

(The use of a two-dimensional system and of identical
rules for top and bottom is for simplicity only. )

Two particularly simple reflection rules used in our
molecular dynamics simulations to produce an approxi-
mately linear shear flow in the x direction are

P = c@,

0 = f(W) = ( + b) —[( + b)' —4(4 + 2b)&'i',

(2)

with c, b ~ 0 and c ~ 1: c = 1 and b ' = 0 represent-
ing stationary walls with normal refiection. Rule (2) has
the symmetry @ = f '(t/j) = m —f(zr —P), which
makes the system retrace its trajectory backwards in
time following a velocity reversal of all the particles.
This time reversal symmetry, which is automatically
satisfied by Hamiltonian dynamics, is also present in
bulk thermostatted dynamics [3—6]. It was beautifully
exploited in [7] to deduce, under suitable additional
assumptions, certain large deviation properties of such
SNS. Somewhat surprisingly, time reversal symmetry
turns out not to be necessary for hydrodynamical behavior
or for obtaining equality between phase space volume
contraction and macroscopic entropy production —at least
for systems in local equilibrium (which can still be far
from global equilibrium). This suggests a "robustness"
of the connection between macroscopic and microscopic
"dissipation" in hydrodynamic regimes which goes
beyond that considered previously.

To understand the nature of the SNS that can be
expected to result from our microscopic dynamics, we
begin with the hydrodynamical or compressible Navier-
Stokes description of a macroscopic shear flow in a
uniform channel of width I in which top and bottom walls
move with velocities ~ub in the x direction and have
the same temperature Tb [1,4,8]. The laminar stationary
fiuid velocity in the x direction u(y) is maintained

by a constant x-momentum Aux H in the y direction.
In addition to u(y), the system is characterized by a
temperature T(y) and density n(y). Calling J(y) the
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heat flux in the y direction, the hydrodynamic entropy
production o per unit volume is

du dlnTo. = —II —J(y) T(y) = —II (u/T)
d

(3)

The second equality uses the fact that in the stationary
state 11u + J (whose divergence is the rate of change of
the local energy density) is zero by symmetry so J(y) =
—IIu(y). The total hydrodynamic entropy produced in
the steady state is then

olume urface
[Ilu/T j ds =

urface
J/T ds

2LII —„/T„= —2(L )11( b/L)/Tb

= (volume) ~IIy (/Tb, (4)
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where y = 2ub/L is the average shear rate; we have
taken the channel to be of length L in the x direction
and unit height in the g direction, with periodic boundary
conditions in those directions.

Equation (4) is interpreted in the macroscopic formula-
tion of irreversible thermodynamics [4,9] as an equality,
in the stationary state, between the hydrodynamic entropy
produced in the interior and the entropy carried by the
heat flux to the walls of the container. To maintain such
a steady state in an experimental situation requires exter-
nal forces acting on the walls to make them move with
velocities ~ub. The work done by these forces, ~IIub~
per unit wall area, is converted to heat by the viscosity
and absorbed by the walls acting as thermal reservoirs at
temperature Tb.

The existence of such macroscopic steady states, sat-
isfying the compressible Navier-Stokes equations from
which (3) and (4) follow, can be proven starting from the
Bolzmann equation, when the walls are modeled by ther-
mal boundaries, i.e., following collisions with the walls,
particles have a Maxwellian velocity distribution with
mean ~ub and temperature Tb [8]. It is expected (but
very far from proven) that such thermal boundaries would
produce similar SNS for general fluid systems. We would
then have on the microscopic level a steady state de-
scribed by an ensemble or phase space measure with a
density p, absolutely continuous with respect to Liou-
ville measure [5]. The hydrodynamic quantities would be
given by ensemble averages, and R would equal the cor-
responding average heat IIux to the thermal walls [8,9].
In general, it is possible to show [9] that the total en-
semble entropy production dSG(t)/dt + gb Jb/Tb ~ 0.
Here So(t) = —f p, (X, t)lnp, (X, r) dX is the Gibbs en-
semble entropy, X being a point in the phase space, and
Jb is the ensemble average heat flux to the top or bottom
wall. In the stationary state p, we would have S~ constant
(proportional to the number of particles in the system), so
5~ would be zero and Jb = —Hub.

Let us turn now to our models where the flow is
deterministic and collisions with the boundaries conserve

energy. It is not clear at all a priori what should now
correspond at the microscopic level to entropy produc-
tion in our system. Following the work in Refs. [3,4],
we note that since our dynamics does not conserve
Liouville volume on the energy surface the quantity

SG(t) = f p, (x, t)(divX) dX will generally not vanish in

the stationary state. In fact, we expect that any initial en-
semble density p, o(X) absolutely continuous with respect
to the microcanonical ensemble will evolve, as t ~ ~,
to a unique stationary measure p, which is singular with
respect to the Liouville measure on the energy surface
[3—7]. We would then have that Sg(t) ~ —~ with

SG(t) f p, (X) (divX) dX = —M, M ~ 0, being the
average compression of phase space volume per unit time
in the stationary state. Such behavior is in fact proven
in [6] for a related simpler model and is to be contrasted
with the case of stochastic boundaries considered earlier
when p, is smooth and Sg(t) ~ 0 as t ~ ~ [9].

In the models treated in [3,4,6] the equations of motion
are such that M is automatically equal to the ensemble av-
erages of microscopic quantities, which can be identified
with thermodynamic forces and fluxes appearing in the
macroscopic entropy production (3) and (4). This is not
the case for the models considered here where there is no
a priori prescription of u or T anywhere in the system and
phase space volume gets compressed only at collisions of
a particle with the wall: the bulk dynamics being Hamil-
tonian. The amount of compression there, computed from
the reliection rules [10], is

sinPd P sinf (@)

The time average of lnm along a trajectory in phase space
then gives the mean exponential contraction rate M of
the phase space volume per unit time. Since there are no
thermodynamic parameters in (5), it is not at all clear a
priori what relation, if any, between M and R will be in
the SNS produced by our model. [This problem remains
even when we consider time reversible models, such as
(2), which are the limit of a continuous thermostatted
model in which the thermostat acts only in the vicinity
of the walls [10]].

Before answering that question we note that if only the
top wall of the channel was moving in the x direction,
i.e. , if we put f(@) = @ in Eqs. (1) and (2) for the
bottom wall, corresponding to specular reflection there,
then no matter how close f(P) is to @ for the top wall,
a stationary state would be one in which all particle
velocities are parallel to the x axis (pointing in the +
direction). Hence the deviation from specular reliection
required to produce a given, ~ub, gets smaller as the
width of the channel, L, gets larger; keeping the density
and kinetic energy per particle fixed. Since we are
interested in macroscopic systems, L ~ ~, we should
consider the case where f(@) in Eqs. (1) and (2) is close
to the identity. Formally we write

0 = f(4) = 0 + ~f (0) + &(~'), (6)
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with 6 = I —c, fj = —@, for model (1) and
6 = b ', fj = —P(7r —@) for model (2). As we
shall see later, fixing ~ub requires that 6 —L ', for
L —+ ce

To compute R and M we call vt = r cos@, v2 =
r sing, 0 ~ P ~ 7r, the x and y components
of the velocity of a particle entering a collision
with the top wall, and let v2g(v~, v2)dv~ dvq =
r sing g(r, P)dr dP, v2 ~ 0 the average number of
particles in dv~ dv2 incident on the top wall per unit

length and unit time in the stationary state. We then
have, for the x component of the momentum Aux,

dr r[cosf(0) —cosO]r sinO g(r, 0)

dr f)(0)r sin 0 g(r, 0) + o(6),

where we have set the mass of each particle equal to unity.
In a similar way

d0 dr In[ f'(0) sinf(0)/ sinO]r sin0 g(r, 0)

dr f)(0)r sin0 + o(6),2 . dg
dO

(8)

i.e.,

where the factor 2 comes from combining the top and
bottom contributions (equal by symmetry) and we have
carried out an integration by parts. Recalling now from
(4) that R = 2LH ul,—/Tb we note that keeping 6L fixed
asL ~ ~and 6 ~0weobtain

R = M[1 + o(6)]
whenever g(r, O) = G(r)e""'"" ~ ', g(v) =
A(v ) exp' —

2 (v —ub) /Tb)
Taking A(v2) to be a constant independent of v corre-

sponds to the assumption that the distribution of particles
entering a collision with the wall is a local Maxwellian.
Calling n,. the number of collisions with the wall per unit

3/2
time and unit length gives A = n, /$2~ TI, . This is
just what would be expected from local equilibrium in
the hydrodynamic limit [5,8,9]. We have thus obtained
an equality between M and R for general collision rules

f(0) for macroscopic fluids in regimes of hydrodynamic
behavior. This is consistent with the results of our simu-
lations which we now describe.

In our computer simulation we used a system of N hard
disks of unit diameter; this sets the length scale. The posi-
tions of the particle centers were chosen randomly (without

overlap) in a domain 0 ~ x ~ L, ~ y~ ~
2 (L —1). The1

system evolved according to Hamiltonian dynamics with
periodic boundary conditions in the x direction and reAec-
tion rules (1) and (2) whenever the particle reached the

1
walls at y = ~

2 L. The value of L was chosen so that the
volume fraction occupied by the disks, p =

4 N/L
0.1. For N = 200 this corresponds to L = 39.6. The
particles were all started with mean speed 1 (which sets
the time scale) as we varied b and c, so we always had

g v; = N We believe that. the results to be described
are statistically reliable within a few percent. This is based
on various checks comparing different N and runs: For
each value of b and c we averaged over many thousand
collisions per particle with other particles and many hun-

dreds with the wall [10]. Higher accuracy can be obtained

by additional simulations, which are planned. There is no
reason to expect any change in our conclusions.

In each run the vertical height, occupied by the centers,
L —1, was divided into 20 equally spaced horizontal
layers and time averages of the density n(y), mean
x velocity u(y), variances ((v —u) ), (v2), and cross
variance ((v —u)vY) were taken. We also recorded time
averages of x-momentum transfer from the walls, H, and
the contraction rate M.

We summarize our results by saying that they were
consistent with the solution of the Navier-Stokes equation
for stationary shear liow in a channel [4,8]. In particular,
we observed an approximately linear profile u(y) = yy,
with measured ratio of stress H to strain y within a
few percent of the shear viscosity g~ computed by Gass
[11] from Enskog theory for hard disks. The x and y
"temperatures" ((v —u) ) and (v~) were approximately
the same, with small variations of T(y) consistent with

hydrodynamical behavior. The velocity distribution
was also consistent with a local Maxwellian with cross
covariance ((v, —u)v, ) ——3 X 10 -. The density
variations were small except near the walls where the
density was higher as expected [2]. They became quite
large when ub exceeded one-half the mean thermal
velocity and was the reason for not going to higher shear
rates than 0.05 in units of thermal velocity per mean
free path. To get higher rates we need to go to higher
densities where the quid is less compressible.

For the conditions used in the simulations we could,
in fact, assume constant values of the density and trans-
port coefficients and compute u(y), T(y), and II consis-
tently from hydrodynamics using Enskog values for the
viscosity and heat conductivity in Eq. (7) with g(v~, v2)
a Maxwellian with ub = yL/2. A comparison of these
"theoretical" and "experimental" values for the mean ve-
locity and temperature in the top layer is given in the
first two columns in Table I. The agreement is not bad.

More important is the impressive agreement between
theory and experiment for M and R given in columns 3
and 4. Here theory corresponds to the (numerical)
evaluation of the integrals in Eqs. (7) and (8) using a
Maxwellian g with u,",",T,', P and measured n, . = 0.046.
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TABLE I. Theoretical and experimental values of u„p T& p M, and R. The last column gives the leading term of both M
and R expansion in 6. The first five rows represent the b model and the last five rows the c model, both with 200 particles
and L = 39.6.

b/c

200.0
100.0
70.0
45.5
26.7
12.5
0.99
0.98
0.97
0.95
0.93
0.90

top i top
th / Bexp

0.038/0. 041
0.077/0. 087
0.108/0. 118
0.162/0. 171
0.263/0. 268
0.478/0. 518
0.055/0. 068
0.109/0. 130
0.160/0. 175
0.252/0. 280
0.335/0. 370
0.441/0. 491

Tth /Texp

0.500/OA99
0.499/0. 498
0.497/OA94
0.493/0. 491
0.483/0. 480
0.443/0. 427

0.499/0. 498
0.497/0. 496
0.494/0. 489
0.484/OA79
0.472/0. 464
0.45 I /0. 437

Mth/Mexp

0.00288/0. 00275
0.0121/0.0116
0.0235/0. 0228
0.0515/0.0507

0.134/0. 132
0.532/0. 518

0.0092/0. 0089
0.0321/0. 0320
0.063/0. 061
0.150/0. 148
0.260/0. 256
0.454/0. 446

Rth /Rexp

0.00282/0. 00282
0.0118/0.0118
0.0230/0. 0231
0.0501/0. 0497

0.130/0. 131
0.493/0. 513

0.0067/0. 0067
0.0249/0. 0255
0.050/0. 051
0.126/0. 132
0.226/0. 238
0.404/0. 438

0.00284
0.0120
0.0236
0.0521
0.139
0.584

0.0067
0.0247
0.049
0.125
0.223
0.402

The last column gives the leading term in 6, for whichI = R, computed from the right sides of Eqs. (7)
and (8).

We note that while the agreement in columns 4 and 5
is equally good for the b and c models, Eqs. (2) and

(I), we are much closer to the hydrodynamic regime
L ~ ~ for the b dynamics than for the c dynamics. The
reason for the difference between the b and c dynamics
appears to be due to the fact that there is a jump in

f(P) at P = zr for the c dynamics, because f(7r) = zr

for the b but not the c dynamics. As a consequence,
the corrections to the linear term in 6 are much larger
for the latter —in fact, the second derivative of M with
respect to 6 diverges for the c dynamics at 6 = 0. A
simple calculation shows that for the top velocities in
the first two rows in Table I we would have to make
L ~ 980 or 870 for the c dynamics and L ~ 30 or 28
for the b dynamics to have M and R agree within 3%.
[The mean separation between particle centers is -2.76,
while the measured (and theoretical) mean free path is
approximately 2.2 in our units, so the effective ratio of
macrolength or microlength scale is about 20 [5,8,9].

We mention finally that we also carried out simula-
tions with different refIection rules, different densities,
and different shear rates. They all seemed to lead to
hydrodynamic behavior. A complete description will be
given in [10].
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