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Aggregation, Fragmentation, and the Nonlinear Dynamics of Electrorheological Fluids
in Oscillatory Shear

James E. Martin and Judy Odinek
Advanced Materials Physics Division, Sandia National Laboratories, Albuquerque, New Mexico 87485- J427

(Received 17 November 1994)

We have conducted a time-resolved, two-dimensional light scattering study of the nonlinear dynamics
of field-induced structures in an electrorheological quid subjected to oscillatory shear. We have
developed a theoretical description of the observed dynamics by considering the response of a
fragmenting and aggregating particle chain to the prevailing hydrodynamic and electrostatic forces.
This structural theory is then used to describe the nonlinear rheology of electrorheological fluids.

PACS numbers: 47.50.+d, 82.70.Dd, 83.50.Sp

Electrorheological (ER) fluids are particle suspensions
that undergo dramatic rheological changes when subjected
to strong electric fields [1,2]. The rheology of these
fluids at low to moderate volume fractions is due to the
aggregation of particles into volatile chainlike structures
whose size adjusts in response to the flow, fragmenting
and aggregating as the shear rate increases or decreases.

Structural studies on ER fluids have focused on the
quiescent state and on stationary flows. Optical studies of
the quiescent ER fluid have elucidated both the kinetics of
structure formation [3] and the final equilibrium state [4].
Light scattering studies of an ER fluid in steady shear [5]
have determined the manner in which the chain size and
orientation increases with shear rate, confirming earlier
experiments and theory of the power-law shear thinning
viscosity [6].

Although some experimental work has been done on
fluid structure in stationary flows, the chain dynamics has
not yet been determined in nonstationary flows such as os-
cillatory shear. Because an understanding of electrorhe-
ology in nonstationary flows is essential to modeling the
behavior of ER devices, we have undertaken a study of
the chain dynamics in oscillatory shear. We have dis-
covered a class of nonlinear dynamics that is dominated
by fragmentation and aggregation events occurring dur-

ing each shear cycle, and have used our observations to
develop a theory of nonlinear rheology. Direct rheologi-
cal measurements [7,8) show that the framework of linear
viscoelasticity, a phase-shifted stress proportional to an
applied strain is of limited utility for ER fluids, and so
a nonlinear theory is appropriate.

Sample preparation. —Our sample is a transpar-
ent model silica fluid developed for light scattering
and rheology studies [3]. The 700 nm spheres are
coated with a silane coupling agent and dispersed in
4-methylcyclohexanol to 7.5 wt % silica. Aggregation is
reversible by Brownian motion.

Apparatus. —The scattering cell consists of an inner
40 X 2 mm circular disk electrode that is concentric to
a 42 mm hole in an outer electrode, thus creating a radial
electric field in a 1 mm gap. The outer electrode is sand-

wiched between plastic, and both are embedded between
glass plates, with a fluid-filled 2 mm gap between the
electrodes and the glass plates. The inner electrode is os-
cillated by a rod connected to a 25 mm lever on the elec-
trode shaft, driven by an eccentric on a 300 oz in. micro-
stepping motor.

The electric field is a 1 kHz square wave from a
Trek power supply driven by a Wavetek signal generator.
Voltages are reported peak to peak. Scattering data are
captured by a Pulnix video camera, and stored on video
tape. Data are then digitized in real time by a Perceptix
frame grabber on a Macintosh Quadra 950. Optical
corrections are then made to the scattering data [3].

A problem in this experiment is the phasing of the
applied strain with the scattering data. We devote a small
corner of the scattering screen to an optical "strain phase
clock" created by a prism rotating in synchrony with the
stepping motor. The prism defiects a He-Ne laser beam
that thus scribes a circle on the scattering screen, encoding
the absolute strain phase on each image.

Data analysis. —A scattering image contains a pair of
scattering lobes [3] and the strain phase clock. These
scattering lobes are tilted relative to the orientation of
the scattering lobes obtained for the quiescent fluid, which
are orthogonal to the electric field. The orientation of the
scattering lobes reflects the orientation of the chains.

The rotation angle 0 of the chains is determined by
first dividing the scattering image into 360 wedges, each
subtending 1 of arc, and then integrating to find the
average intensity in each wedge [5]. The orientation of
the scattering lobes is then obtained by either locating
the intensity maximum, 0 „,or finding the median, 0, ,

that divides the integrated scattered intensity into equal
halves, so fz I(0) dO = f "9o I(0) dO. The median is
useful when the dynamics is strongly nonlinear, but gives
an orientation angle about 5 times smaller than 0 „,since
it is greatly affected by polydispersity.

Measurements. —At low strain amplitudes yo «1 the
response of the orientation angle 0 „to the shear strain

y = yo sin(2' vt) is nearly sinusoidal. This sinusoidal
response is exemplified in I ig. 1, where clockwise Lis-
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FIG. l. Clockwise Lissajous plots of tan(0 „)against y are
virtually elliptical at small strain amplitudes. At high frequency
the motion is nearly in phase with the strain; at low frequency
the motion is nearly in phase with the strain rate.

sajous plots of tan(0, „) against y are shown to be
nearly elliptical. At high frequencies the shear rate, j
27r vyo sin(2' vt), is large, and the chain orientation is
nearly in phase with the fluid shear, indicating the hy-
drodynamic torque on a chain dominates the electrostatic
torque. ANne deformation is nearly achieved, as shown
by the dashed line.

At low shear frequencies the chain orientation leads the
strain by 57 and thus lags the strain rate by 33 . In

this regime electrostatic torque evidently dominates the

hydrodynamic torque.
At higher strain amplitudes, Fig. 2, the sinusoidal

motion becomes "clipped" as the chains fragment and
aggregate during a cycle in order to maintain good field
alignment, giving parallelogram Lissajous plots.

At lower voltages we observe the nonlinear fluid
response shown in Fig. 3. Starting at maximum positive
strain, the chain half cycle can be described as follows.
As the strain reverses, the chains corno ve with the
fluid, tilt to a maximum angle at half maximum strain,
whereupon they fragment and undergo retrograde motion
to realign with the electric field. Analysis shows that as
they comove with the shearing Quid, the chains aggregate,
and indeed the scattering lobes brighten considerably
during this time. These observations of chain motion
have led us to propose the following model of ER quid
microstructure and rheology.

Theory. The salient features of the experimental re-
sults can be understood in terms of a kinetic model of
the dynamics of volatile chains. In this model we assume
that dipolar interactions and hydrodynamic forces domi-
nate thermal forces, which is certainly true in our experi-
ments. This kinetic chain model differs from the elliptical
droplet model [6], which minimizes a free energy and thus
is an equilibrium model.

Consider a linear chain of 2N + 1 spheres of radius
a labeled from N to N i—n a coordinate system (x, z),
the origin of which is centered on the zeroth sphere. The
z axis is in the direction of the electric field, and the x
axis is in the direction of fluid flow. The chain makes
an angle 0 to the z axis, so the position of the kth bead
is (2ak sin0, 2ak cos0). The Quid velocity is given by
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FIG. 2. Lissajous plots a strain amplitudes of yo = 0.5, 1.6,
and 3.2 have parallelogram shapes that indicate a "clipping"
of the angular motion as chains fragment and align with the
field at high strains. The theoretical curves are computed in
the instantaneous "equilibrium" limit where k is large.
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FIG. 3. At low voltages a novel retrograde motion of frag-
menting chains can be observed (dashed line is theory). The
amplitude of motion is sensitive to the dipolar model and the
method of data reduction.
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Nmax

v(z) = yzx, where x is a unit vector, and the velocity of
the kth bead is vt. = 2akO(cosOx —sinOz) for a chain
rotating at angular velocity 0.

The shearing fiuid exerts a hydrodynamic force F& =
67rppa[v(z) —vt. ] on the kth bead, where pp is the
liquid viscosity. This force can be decomposed into a
tangential component that causes chain rotation, and a
radial component that causes tension or compression.
The tangential component of the hydrodynamically in-
duced force between the kth and (k + 1)th spheres
is Fh q

——
g&+& Ft.(cosO, —sinO) = 67r p, pa (y cos 0

0) (N —k ). This force is a maximum at the chain
center, where in low Reynolds number flow is balanced
by the tangential component of the dipole-dipole inter-
action force, F, 9

= (3ma p, py/8Mn) sin20 [9]. Here
Mn = ~py/2@pe, p2Ep is the Mason number, which ex-
presses the ratio of hydrodynamic to electrostatic forces,
p is the dielectric contrast factor (e„—e,)/(e~ + 2e, ),
and s, and e~ are the liquid and particle dielectric con-
stants [9]. Balancing the tangential hydrodynamic and
electrostatic forces at the chain center [10] gives the equa-
tion of motion [11]

0 + ord sin20 = ycos 0, cud = y/16MnN . (1)
The characteristic frequency cud depends strongly on

chain size. Physically acceptable values of N must
correspond to mechanically stable chains or fragmentation
will occur. The radial component (directed along the
chain axis) of the hydrodynamic force is

Fh „=P Fq(sinO, cosO)
0+1

= 3' p, pa y sin(20) (N —k )
This force, which again is a maximum at the chain

center, puts the chain in tension when Oj ~ 0 and un-
der compression when 0 j ( 0. For the chain to be
stable to fracture this hydrodynamically induced force
must be smaller than the radial component of the electro-
static interaction [9] F, , = (3vra2ppy/8Mn) (3cos 0—
1). The maximum stable chain number is determined by
balancing these forces at the chain center:

2 3cos 0 —
1

Mn sin20 (2)
yO ~0.

N „ is dependent on chain orientation and strain rate,
causing nonlinear response when driven by oscillatory
shear y = 27r v yp cos(2~ vt). The maximum stable
chain length diverges when the chain is aligned with the
field, when the instantaneous strain rate is zero, and when
the chain is under compression.

If a chain finds itself far from its maximally stable size,
then its size will adjust by aggregation or fragmentation.
The kinetics of aggregation and fragmentation can be
described by the phenomenological formula

dN(t) k N(t)'
dt N(t) N', „(t)

1
2 (3)

where because induced dipolar forces drive aggregation
the rate constant k = kp(8epe, p2Ep/pp) where kp is a

concentration dependent constant we treat as a free pa-
rameter. When the chain is at its maximum length no
aggregation or fragmentation occurs since dN(t)/dt = 0.
When the chain is much smaller than its maximum sta-
ble length, the chain will aggregate according to N(t) =
QN(0)2 + 2kt, in agreement with the root time prediction
of See and Doi [12]. Thus aggregation is a slow power-
law growth process that is independent of the often diver-
gent size N „. If the chain is much larger than its stable
length, then it will fragment exponentially quickly accord-

—
/6 Ning to N(t) = N(0)e 't m". Note that the fragmentation

rate k/N „is proportional to the strain rate and is inde-
pendent of the electric field. Thus the phenomenological
rate equation gives physically reasonable behavior, while
avoiding the complexities of the Smoluchowski equation.

Equations (1)—(3) are a set of coupled equations that
model the dynamics of chains in shear flow. There
are four independent parameters in the system; Mn,
v, yo, and ko. A simplification occurs by noting that
solutions to the kinetic equation are of the form N(t) =
(y/16vMn)'t n(vt). Expressing all functions in terms of
the dimensionless time s = vt this leads to the reduced
equations

0 + —sin20 = j cos 0, n = 1—
n2 n n max — (4)

2 3cos2 0 —
14n = ~ y sin20max

OO

j0 ~0,
jO ~0.

The reduction to a two parameter (yp, kp) model is a result
of the rate equation we have chosen. Because the strain
amplitude is fixed by experiment, this is really a signal
free parameter model.

Before showing the behavior of these equations
we would like to discuss the predicted rheology.
The hydrodynamic torque 7.

@ on a chain can be
computed by summing the tangential component
of the hydrodynamic force on each bead times its
respective moment. In terms of the chain length
I = 2a X 2N the hydrodynamic torque is thus
'rh = ( tr/4)p, pI (y cos 0 —0). The electrostatic torque
~, can be computed by recalling from the torque balance
of Eq. (1) that ycos 0 —0 = (ya2/Mnl~) sin20; this
gives r, = (n/2)a ape, p Epl. sin20. The stress rr in
the sample is the hydrodynamic torque density, which
equals the electrostatic torque density since inertia is
small. In terms of the volume fraction @ of spheres this

is o. = 6p, pN @(yeas 0 —0) = 4epe, PE~~@ sin20. .

This equation demonstrates that the stress is nearly
proportional to the angle 0, so light scattering is an
independent probe of stress [13]. Furthermore, it is
apparent that when 0 = 0, the chain is comoving with
the fIuid so ycos 0 = 0.

Because the dynamics of chain orientation 0(s) is
independent of electric field and shear frequency, we
conclude that the stress scales purely as the square of
the electric field. In steady shear it is readily shown that
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