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Does the Time-of-Swing Method Give a Correct Value
of the Newtonian Gravitational Constant?

Kazuaki Kuroda
Institute for Cosmic Ray Research, University of Tokyo, 3-2-I, Midoricho, Tanashi, Tokyo I88, Japan

(Received 12 June 1995)

A standard way of measuring the Newtonian gravitational constant has been the time-of-swing
method using a torsion pendulum. A key assumption is that the spring constant of the torsion fiber is
independent of frequency. This is likely to be true to a good approximation if any damping present
is proportional to velocity. However, recent work on the elasticity of flexure hinges suggests that
typically the damping at low frequency is best modeled by including a frequency-independent imaginary
component in the spring constant. In this case, the real part of the spring constant must vary, leading
to an upward bias in a measurement of G.

PACS numbers: 04.80.Cc, 06.30.Gv, 62.20.Dc

Measurements of the Newtonian gravitational constant
have commonly been performed using a torsion balance
and the time-of-swing method, in which the time of
swing is measured for two positions of the source masses,
shown as "near" and "far" in Fig. 1 [1]. The accuracy
of such measurements depends on constancy of the spring
constant of the torsion fiber.

Recently, in the neighboring field of gravity wave de-
tection, there has been a considerable amount of work
done concerning the elasticity of materials at very low
frequencies, motivated by the need for test mass suspen-
sions with ultralow mechanical noise for use in laser in-
terferometric gravity wave detectors. Attention has been
focused on the frequency dependence of internal friction
because of the connection with thermomechanical noise
via the fluctuation dissipation theorem. Quinn et al. [2]
obtained good agreement between the dissipation obtained
experimentally and a model of an anelastic solid incorpo-
rating an infinite number of relaxation processes with a
continuum of time constants from a minimum of 7.0 up to
a maximum r, each with the same relaxation amplitude.
A similar model has also been treated by Saulson [3] and

an experimental method to probe such behavior has been
devised by Saulson et al. [4]. It is thought that such a
model may be applicable to a broad class of materials.

A consequence of the anelastic solid model is that not
only the dissipation but also the elasticity is frequency
dependent. This is irrelevant compared to thermal noise
in suspensions and has thus been neglected. However, in
this paper I point out that it is highly relevant to high-
precision quantitative applications such as time-of-swing
measurements. Of course, anelasticity is only one of many
possible error sources in measurements of G [5], and is not
relevant to certain other recent measurements [6], which
work on different principles. Nonetheless, if the fiber
materials used in recent measurements of G have anelastic
parameters similar to materials already measured, it could
well explain some of the observed discrepancies [7].

Anelasticity can be represented by a generalized com-
plex Young's modulus, the real part of which leads to the
normal spring constant and the imaginary part of which
represents damping. A simple system that shows anelas-
ticity is the spring and dash-pot system of Fig. 2, which has
the following relationship between stress o and strain e:

eEjt + e. (ER + 6E)r = o + o r .
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FIG. 1. In the time-of-swing method, the period of the torsion
balance is measured for two positions of the attracting masses
labeled "near" and "far."

Eg is the relaxed Young's modulus, i.e., the effective
value in the limit of low frequencies, and 6E is the
difference EU —ER between the relaxed modulus and the
high frequency, unrelaxed modulus. The relaxation time
constant ~ is the ratio of the dash-pot viscosity v and 6E.
Since we are interested in the frequency response we take
the Fourier transform of Eq. (1),

tr (co) CO 7 1CO T
E(co) = = ER + 6E +

E co i+co w ]+co
(2)

Certain materials are well modeled by an ideal spring with
a single Maxwell unit over certain frequency ranges, im-

plying a relaxation process with a well-defined time scale.
However, in order to explain experimental results, Quinn
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FIG. 2. An ideal spring in parallel with a Maxwell unit repre-
sents a single relaxation process. The materials considered in
this paper are modeled as an infinite number of microdomains,
each behaving as a Maxwell unit. The units have a common
relaxation amplitude but a continuum of time constants.

FIG. 3. Values of the Newtonian gravitational constant deter-
mined using torsion balances are plotted with their estimated
systematic errors as derived in the respective papers. Heyl and
Chrzanowski showed two values in their paper l 1] which were
averaged to give the pre-1986 CODATA value [9].

1 + (By/y) I +
ln

21n(r- /ro) I + tuzro
(3)

Let us apply Eq. (3) to measurements of the Newtonian
gravitational constant G from the literature. In the absence
of specific information concerning the particular fiber
materials used, we take the parameter values v.p

= 10 s
and ~- = 5000 s for Cu-Be alloy from Ref. [2]. Since
these parameters affect ~ through a logarithm function,
slight errors in these numbers will not produce a large
difference in m . The parameter to which cu is most
sensitive is By/y. Since BE/E was 0.02 in Ref. [2]
and By/y = BE/E for isotropic materials, we expect

et al. [2] used a more complex model where the above
relaxation process was ascribed to an infinite number of
microscopic domains with a continuum spread of relax-
ation times but a common value of relaxation strength, 6E.
By integrating this against ~ from 7 p to 7. , they obtained a
semiempirical formula for Young's modulus. In Ref. [2],
the real part was not considered in detail because the ex-
perimental data were modeled adequately by the imagi-
nary part. However, if we suppose that the continuum
Maxwell model is basically correct and wish to apply
the result given in Ref. [2] to the torsion balance, the real
part becomes of considerable interest. Because of the pro-
portional relationship between Young's modulus and shear
modulus, the above result can readily be adapted to the
shear modulus, with the result that the period of the tor-
sion balance depends on the anelastic characteristics of the
fiber material. It is not difficult to obtain the real part of the
shear modulus, y, and to find the frequency dependence of
the torsion fiber spring constant in terms of the correspond-
ing parameters Tp, 7, and 6y. The angular frequency of
the resonance of a torsion pendulum is greater than the
value predicted from the zero frequency elastic constant
by a factor

By/y also to be around 0.02. To estimate this value from
existing data of G, I compare the values of G determined
by Heyl and Chrzanowski [1],which are plotted in Fig. 3,
with the recent value by Luther and Towler [8]. The
measurements by Heyl and Chrzanowski used different
torsion fibers, specifically, one of hard-drawn tungsten
wire, 250 p, m in diameter and 1 m in length, and one of
annealed tungsten with the same diameter and length. The
resulting relative difference in G was 0.1%. If By/y is

exactly 0.02 for both wires, it is difficult to find appropriate
values of 7.p and ~ to explain the difference of the G
values. If, on the other hand, the difference is attributed
wholly to variations in By/y, the difference in G can be
simply explained by a difference in By/y between the
two wires, roughly equal to 0.02. Since By/y is always
positive, the larger of the two values must therefore be
greater than 0.02. This is still compatible with the spread
of values of BE/E considered in Ref. [2].

From the existing data it is impossible to determine

By/y for each wire. However, the true value of G must
necessarily be less than both values in Ref. [1], and this
is not compatible with the value by Luther and Towler
[8]. Although the parameters of the fused silica used
by Luther and Towler are likely to differ substantially
from those of the tungsten of Heyl and Chrzanowski, we
naturally expect a similar anelastic effect at some level.
There are not enough experimental data to be more precise;
however, note that, because the difference of frequency in
the determination by Luther and Towler was smaller than
for Heyl and Chrzanowski, for a given set of parameters
the bias will be less. If we again assume the same values of
'ro, 7, and By/y, the true value of G is lower by 1 50 ppm,
which is far larger than the error estimated in [9].

If, in fact, the value of By/y for fused silica is far
greater than that in tungsten, it is conceivable that all
values of G given in Fig. 3 might converge to one point
below all of them.
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The above discussion assumes the relatively specific
parametrization and numerical values of Quinn et al. [2]
However, it is possible to generalize in a useful way
by using a well-known special case of the Kramers-
Kronig relations, Bode's phase-gain law. If over some
frequency range the imaginary part of the spring constant
is a fixed fraction P of the real part, then the magnitude
of the spring constant must be proportional to
[4). Accordingly, the measurement by the time-of-swing
method gives a value for 6 too high by a fraction P/~ If.
the wire is the principal source of damping, then the bias
is equal to I/7r0, where 0 is the quality factor of the
main torsional mode. This gives a simple way to estimate
the systematic error in G caused by anelasticity. This can
immediately be applied to the experiment of Luther and
Towler [8] who quote an approximate damping factor of
10 ". Considering the lack of significant figures, I take

Q to be in the range from 2.5 X 103 to 1.6 X 104. The
bias is then from 20 ppm to 130 ppm. This is smaller
than the estimation using Eq. (3), but, in fact, quite close
considering that parameters for a different material were
used. Strictly, this is a maximum value, because in
addition to the intrinsic damping of the wire the measured
Q may include a number of other possible losses. If
the dominant components are velocity dependent, then the
anelastic bias will be negligible.

In conclusion, if the torsion fibers used to determine G
by the time-of-swing method are subject to anelasticity, as
described by a continuum Maxwell model with plausible
parameters, then there is upward bias in the determined

values that could explain some of the spread in recent
experimental results. The technique is not completely
invalidated by this bias, but experimenters considering
using it for new G measurements should try to reduce,
and/or control for, anelasticity in the wire, clamps, and
support.
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