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Invaded Cluster Algorithm for Equilibrium Critical Points
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A new cluster algorithm based on invasion percolation is described. The algorithm samples the
critical point of a spin system without a priori knowledge of the critical temperature and provides an
efficient way to determine the critical temperature and other observables in the critical region. The
method is illustrated for the two- and three-dimensional Ising models. The algorithm equilibrates spin
configurations much faster than the closely related Swendsen-Wang algorithm.

PACS numbers: 75.40.Mg, 75.10.Hk

Enormous improvements in simulating systems near
critical points have been achieved by using cluster al-
gorithms [1,2]. In the present paper we describe a new
cluster method which has the additional property of "self-
organized criticality. " In particular, the method can be
used to sample the critical region of various spin mod-
els without the need to fine tune any parameters (or know
them in advance). Here, as in other cluster algorithms,
bond clusters play a pivotal role in a Markov process,
where successive spin configurations are generated using
the Fortuin-Kasteleyn [3] representation to identify clus-
ters of spins for flipping. However, the clusters them-
selves are identified using invasion percolation. The new
algorithm is closely related to the Swendsen-Wang (SW)
algorithm [1] and may be adapted for a wide range of sys-
tems. For purposes of illustration, in this work we will
consider the Ising model.

Let us first recall the SW algorithm as applied to an
Ising system (in the Potts representation). Starting from
a spin configuration, satisfied bonds those connecting
spins that are of the same type are occupied with
probability, p(p) = 1 —e ~ where p = J/kttT is the
coupling strength. Unsatisfied bonds are never occupied.
Clusters of sites connected by occupied bonds are locked
into the same spin type, and all clusters (including isolated
sites) are independently flipped with probability 1/2. The
SW algorithm samples the canonical ensemble of the spin
system at coupling P and/or the random cluster (bond
configuration) ensemble with parameter p. At T, the.
SW algorithm is far more efficient than single spin-Rip
methods, because the flipped clusters are also critical
droplets [4].

Here we propose using invasion percolation [5—10] to
generate the bond clusters for the spin Hips. In the usual
invasion percolation, random numbers are independently
assigned to the bonds of the lattice. Growth starts
from one or more seed sites, and at each step the
clusters grow by the addition of the perimeter bond
with the smallest random number. If a single cluster

grows indefinitely on an infinite lattice, its large scale
behavior is presumed to be that of the "incipient infinite
cluster" of ordinary percolation. In particular, the fraction
of perimeter bonds accepted into the growing cluster
approaches the percolation threshold p, . [9,10]. Invasion
percolation is thus a self-organized critical phenomenon.

For the present, we modify invasion percolation in two
ways. First, we initiate cluster growth at all lattice site».
Consider this change for ordinary invasion percolation:
Every bond is initially a perimeter bond, and the invasion
process consists of collecting bonds in a given random
order. Initially, every site is a cluster, and in most steps of
the growth process two smaller clusters are combined into
a single larger cluster. The growth process is terminated
when some cluster "spans" (i.e., is of linear dimension
that is the scale of) the system. Let f = f(1.) be the
fraction of bonds accepted during the growth process
in a system of scale J. It is intuitively clear as first
discussed in Ref. [5] that as I ~ ~, f approaches p, ,

the ordinary percolation threshold for the corresponding
lattice [11].

The second modification, which is the cornerstone of
this Letter, correlates invasion percolation to an under-

lying spin configuration. As in the SW algorithm, this
is done by allowing cluster growth along only sati»-
fied bonds.

The new method, which we call the invaded cluster
(IC) algorithm, works as follows. Starting with an Ising
spin configuration 5, the bonds of the lattice are given
a random order. Correlated invasion percolation cluster»
are grown as described above until one of the clusters
spans the system. After the growth process is terminated,
each cluster is Ilipped with probability 1/2 yielding a
new spin configuration 5'. The bonds are then randomly
reordered and the process begins anew.

In the present implementation, a cluster is counted as
spanning when the maximum separation in one of the
d directions for some pair of points in the cluster is the
system size I . We have also used a topological spanning
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rule in which clusters are terminated upon winding around
the system in some direction. The results [12] are very
similar to those presented below.

We tested the algorithm on the nearest neighbor, ferro-
magnetic Ising model on square and simple cubic lattices
with periodic boundary conditions. The computation time
per Monte Carlo step scales linearly in the number of
spins but with a somewhat larger prefactor than for the
SW algorithm. After equilibration for 200 steps starting
from the spin up state, statistics were collected on the en-

ergy E and the ratio f of the number of accepted bonds to
the number of satisfied bonds. For each system size we
collected statistics for the order of 10 Monte Carlo steps.
We first discuss the results for two-dimensional systems
with sizes up to 500 . In Fig. 1 we show the mean and
median [13] values of f plotted against 1/L. A linear fit
through the median data extrapolates to 0.5855 compared
with the exact value, p(P,.) = 1 —e ~ = 0.58579. . ..

In Fig. 2, we plot the standard deviation of f as a
function of 1/L. The solid line is a fit to a function
of the form co + c~L ' + c2L ', which yields co =
—0.0014. Figures 1 and 2 are thus consistent with the
hypothesis that the distribution of f approaches a delta
function at p(P,.) as L ~ ~ with a scaling that is

given, approximately, by L '~ . The average energy
per spin (E)/N is shown in Fig. 3 and plotted against
the inverse of the system size 1/L. The best fit by
the form eo + e ~ L ' + e2L yields eo = —1.706 in
comparison to the exact result —1.7071. The variance
of the total energy divided by the number of spins is
shown in the inset of Fig. 3. In the canonical ensemble,
var(E)/N is proportional to the specific heat and diverges
logarithmically in L, whereas here we find that this
quantity diverges linearly in L. It is clear that the IC
algorithm does not sample the canonical ensemble.

The results for the three-dimensional Ising model up
to system size 70 are qualitatively similar to the two-
dimensional results except that the finite size scaling
behavior for f is controlled by the three-dimensional Ising
correlation length exponent v = 0.63. In Fig. l we plot
the mean value of f against L ' ' The s. olid line in
the figure is the least-squares linear fit to all the data
which yields an intercept at 0.35803 in comparison to
the accepted value [14] p(P,.) = 0.35810. The standard
deviation of f vanishes with a leading behavior that
is well fitted to L ' '. The mean energy per spin
extrapolates to —2.00.

Why does the IC algorithm work? We do not have a
rigorous proof that as the system size goes to infinity the
distribution for f peaks at p(P, ) or that observables such
as the energy density converge to their limiting (infinite
volume) values at criticality. Nonetheless we can give
some heuristic arguments supporting the validity of the
algorithm.

The discussion is based on the observation that each
iteration of the invaded cluster algorithm is identical to
one iteration of the SW algorithm with p = f Suppose.
we start with an infinite (or huge) spin configuration that
is already typical of the critical point. On the basis of
current understanding, p(P, ) corresponds to the threshold
for the formation of large-scale bond clusters in the
associated correlated bond percolation problem on this
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FIG. 1. The fraction of accepted bonds for two and three
dimensions vs L ' '. For two dimensions the mean and
median values of f are shown. The solid lines are linear fits
through the data, and the known values of p(P, . ) are marked on
the vertical axes with diamonds.

FIG. 2. The standard deviation of f vs 1/L for the two-
dimensional Ising model. The solid line is the least-squares
fit by the form c() + cIL '/ + c2L
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FIG. 3. (E)/N vs 1/L for the two-dimensional Ising model.
The solid line is a fit by the form eo + eII ' + e2L, and
the exact infinite volume result is indicated by a diamond on
the vertical axis. The inset shows var(E)/N vs L The so. lid
line is a linear fit through the data.

configuration. Let us now parallel the arguments given
above for uncorrelated invasion percolation. On a finite
system, in a critical spin configuration, the fraction f
of accepted satisfied bonds will be close to p(P,.) when
some cluster first spans the system. Hence, when the spin
clusters get Aipped, the new configuration should still be
typical of criticality. It thus follows that if the invaded
cluster algorithm starts from a critical spin configuration,
it behaves like the SW algorithm with a temperature that
fluctuates near T, and therefore remains near criticality.

It is also clear that the IC algorithm moves the spin
configuration toward criticality if it is started in either
the high or low temperature phase. Suppose the spin
configuration is in the low temperature phase. Here the
portion of satisfied bonds is greater than the critical value,
and due to this relative abundance, a smaller fraction is
needed to produce a spanning cluster than in the case
of a critical spin configuration. For example, in the
extreme case of the zero temperature configuration, one
obtains f = p„ the ordinary percolation point which
is, of course, significantly smaller than p(P, ). Writing

f = I —e i, this corresponds to an iteration of the SW
algorithm at T ) T, and the system is pushed toward
higher temperature. Conversely, if the spin system is
in the high temperature phase, there are not enough
satisfied bonds and spanning will occur for f ) p(P, ),
corresponding to an iteration of the SW algorithm at a
temperature less than the critical temperature. We thus
have a negative feedback mechanism which warms the
spin system when its temperature is below T, and cools
the spin system when its temperature is above T,

These arguments suggest that, in finite volume, the sta-
tionary distribution of the IC algorithm is close to (al-
though not identical to) the canonical ensemble at P,
and/or the corresponding Fortuin-Kasteleyn random clus-
ter distribution at p(P, ). We will refer to the distribution
sampled by the algorithm as the invaded cluster ensemble.
Let us further suppose that the distribution for f becomes
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FIG. 4. The normalized magnetization (M) and energy (E)
autocorrelation functions for Swendsen-Wang (SW) and in-
vaded cluster (IC) dynamics for the two-dimensional Ising
model.

sharp as L ~ (x) and that the volume fraction of the span-
ning cluster tends to zero in this limit. It then follows that
in the invaded cluster ensemble, the distribution functions
of all local observables, e.g. , spin correlation functions
or cluster size distributions, will converge to their infi-
nite volume critical point distributions. The critical ex-
ponent r I

= 2 + P/(P + y)] can be obtained from the
cluster size distribution. Our measurements of the cluster
size distribution for the two- and three-dimensional Ising
models are consistent with the accepted values of ~. An-
other independent exponent can presumably be extracted
via finite-size scaling. On the other hand, we must em-
phasize that finite-volume fluctuations in the invaded clus-
ter ensemble such as var(E) need not have the same value
as in the canonical ensemble and cannot be interpreted as
thermodynamic response functions.

We measured the normalized energy and magneti-
zation autocorrelation functions. The energy autocor-
relation functiop is defined by (I E(t) —(E)] I

E(0)—
(E)])/var(E) with r the number of iterations of the al-
gorithm. Results for two dimensions are plotted in Fig. 4
and compared to the SW algorithm. The energy and mag-
netization are almost fully decorrelated in a single Monte
Carlo step. Results for the three-dimensional Ising model
are similar. The negative overshoot in the energy auto-
correlation is consistent with the negative feedback mech-
anism described above, and the !atter suggest why the
algorithm is so fast. Consider again the example of an
initial spin configuration at zero temperature: one itera-
tion of the SW algorithm at P,. yields a bond percolation
configuration at p(P, ) ) p„which still maintains a con-
siderable degree of low temperature order. In particular,
the average magnetization per site is still appreciable. By
contrast, the magnetization after one step of the IC al-
gorithm will have essentially vanished. If the same type
of reasoning is applied to more general configurations, the
conclusion is that the IC algorithm drives a system to criti-
cality faster than the SW algorithm with p = p(P, .). It
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is tempting to speculate that in some cases invaded cluster
dynamics has no critical slowing down.

The invaded cluster algorithm should find many uses.
The extremely rapid equilibration time suggests it may be
the best approach for high precision simulations of the
critical region of large spin systems. Using the embed-
ding method of Ref. [2], continuous spin models may be
simulated. The algorithm may also be used to study first
order transitions, preliminary results for Potts models with
first order transitions indicate that the transition temper-
ature is correctly located [12]. The IC algorithm should
also prove useful for quenched random ferromagnetic sys-
tems where the critical temperature which depends on
the details of the disorder distribution is often difficult
to pin down.
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