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Convergent Strong-Coupling Expansions from Divergent Weak-Coupling Perturbation Theory

W. Janke&, 2 and H. Kleinert
'Institut fur Physik, Johannes Gutenberg Universi-tat Mainz, Staudinger Weg 7, 55099 Mainz, Germany

Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
(Received 9 February 1995)

Divergent weak-coupling perturbation expansions for physical quantities can be converted into
sequences of uniformly and exponentially fast converging approximations. This is possible with
the help of an additional variational parameter to be optimized order by order. The uniformity of
the convergence for any coupling strength allows us to take all expressions directly to the strong-
coupling limit, yielding a simple calculation scheme for the coefficients of convergent strong-coupling
expansions. As an example, we determine these coefficients for the ground state energy of the
anharmonic oscillator up to 22nd order with a precision of about 20 digits.
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With the help of the recursion relations found by Ben-
der and Wu [I] it is easy to calculate a large num-
ber of these coefficients using some symbolic algebra
program, for example, MApLE. Nevertheless, as is well
known, the series (2) cannot be used to find an accu-
rate energy, since it has a zero radius of convergence
caused by the factorial growth of the coefficients e~ =
—(1/7r) Q6/n (—3)'l!l 'I . Only for small couplings

One of the important problems in the physics of strong
interactions is the extraction of physically meaningful
results from perturbation expansions which all diverge,
even for small couplings, and become completely useless
for strong couplings. The perturbation expansion for the
energy eigenvalues of the quantum mechanical oscillator
is often used to illustrate this difficulty. The potential is

V(x) = x + —x (to, g ) 0), (1)
M 2 g 4

2 4

and Rayleigh-Schrodinger perturbation theory for the
ground-state energy yields a power-series expansion

g ~ 0.1 it yields reasonable approximations if truncated
at a finite order N, optimally at the integer closest to 3/4g.
For stronger couplings such as g = 1, the result becomes
worse for increasing orders.

The purpose of this Letter is to point out a possible
future remedy of this problem. It is based on a systematic
extension of the Feynman-Kleinert variational approach
to path integrals [2], which has recently been developed
into a fully Hedged convergent variational perturbation
theory [3,4]. This theory converts ordinary divergent
perturbation expansions into sequences of uniformly and
exponentially fast converging approximations. In this
Letter we show that the theory has a simple strong-
coupling limit which can efficiently be used to calculate
the coefficients of strong-coupling expansions. The latter
are convergent for all g & g„where g, may be quite
small ~

As an example, we consider the ground-state energy of
the quantum mechanical anharmonic oscillator and find
23 strong-coupling expansion coefficients. The associ-
ated approximate expansion yields accurate energies for
all g ~ 0.2 (the convergence radius of the full series be-
ing =0.16). There is no problem in applying the same
method to excited states.

The procedure goes as follows (see Sec. 5.13 of
Ref. [4]). First, the harmonic term of the potential is split
into a new harmonic term with a trial frequency 0, and a
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remainder: that co enters the reexpansion coefficients (g) in the form
2M

X

After rewriting

))'-, (cu'

V(x) = x'+ V,„,(x), (5)

e( ——P e, [4(~ —I)/g]' '.(I —3j)/2
J

(n)The quantities —„, wz (g, 0) are therefore given by

(14)

with an interaction

V;„,(x) = (rx + x), r = (m I) ) (6)

we perform a perturbation expansion in powers of g at a
fixed r:

1 (n) „1
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w~ (g, O) = g, ~ e( (g/4)'
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g = g/II3, cu = o)/A,
the approximation can be written as

IV)v = (g/g) w)v(g. ~ ).

(10)

From the approximate energies (9) it is easy to derive

simple formulas for the coefficients of the strong-coupling
expansion. We expand the function w~(g, co ) in powers
of co = (g/cu ) 7 g 7 and find

—2/3

~)v = (g/4)'7' o'o + ~)
M

with the coefficients
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Here w)v (g, O) denotes the nth derivatives of w~(g, co )
(n) 2

with respect to co at co = 0. To calculate them, we note

/4 ) l

E (g, .) = &P.&(.)
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The calculation of the new series up to a specific order N
requires only little additional work, being easily obtained
from the ordinary perturbation series (2) by replacing
cu by v7A~ + gr/2, and by reexpanding (2) in powers
of g up to the Nth order. This yields the reexpansion
coefficients

eI(r) = P e) (2rA)' '.(1 —3j)/2
j=0

The truncated power series

W~(g, B):=E„(g, (~' —f)'))

is certainly independent of A in the limit N ~ ~. At
any finite order, however, it does depend on A, the
approximation having its fastest speed of convergence
where it depends least on 0, . If we denote the order-
dependent optimal value of 0 by 0&, the quantity
W)v(g, II)v) is the new approximation to E(g) [5]. In
terms of the dimensionless constants

TABLE I. Strong-coupling expansion coefficients n„.

0
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

0.667 986 259 155 777 108 270 96
0.143 668 783 380 864 910020 3

—0.008 627 565 680 802 279 128
0.000 818 208 905 756 349 543

—0.000 082 429 217 130077 221
0.000 008 069 494 235 040 966

—0.000 000 727 977 005 945 775
0.000 000 056 145 997 222 354

—0.000 000 002 949 562 732 712
—0.000 000 000 064 215 331 954

0.000 000 000 048 214 263 787
—0.000 000 000 008 940 319867

0.000 000 000 001 205 637 215
—0.000 000 000 000 130 347 650

0.000 000 000 000 010 760 089
—0.000 000 000 000 000 445 890 1

—0.000 000 000 000 000 058 989 8
0.000 000 000 000 000 019 19600

—0.000 000 000 000 000 003 288 13
0.000 000 000 000 000 000 429 62

—0.000 000 000 000 000 000 044 438
0.000 000 000 000 000 000 003 230 5

—0.000 000 000 000 000 000 000 031 4

The optimal value of II)v has the N dependence (see
Ref. [4] and the third part of Ref. [3])

=g N I+6 85/Ni. (16)

where the coefficient c is found from a saddle point ap-
proximation to a dispersion relation for the reexpansion
coefficients. By balancing two exponentially divergent
terms, one obtains a simple transcendental equation yield-
ing c = 0.186047272987397512984554740462; The
constant 6.85 stems from an eyeball fit to the lower en-
velope of all extremal values of A. The corresponding
N-dependent values of the dimevsionless coupling con-
stant g = g/Az are inserted into (13) and produce the3

coefficients shown in Table I. Our results for a0 agree to
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all 23 digits with the most accurate value for no available
in the literature [6]:

~o = 0.667 986 259 155 777 108 270 962 016919860

199430 404 936 984 060 455 976 663 80. (17)
For a

~
to o. ~ ~, our results are consistent with,

but considerably more accurate than, previous re-
sults in Ref. [7] (e.g. , n~ = 0.143 668 783 380865,
n2 = —0.008 627 565 680 803).

As a further check we have evaluated our strong-
coupling series at g/4 = 0.1, 0.3, 0.5, 1, 2 (setting
cu = 1) and compared the numbers with the very pre-
cise lower and upper bounds of Vinette and Ciiek [6].
Table II shows that the energies are accurate to about
20 digits for all couplings g/4 ~ 1. The accuracy is
limited by the precision of the n, . Note that our strong-
coupling expansion gives very good energies down to
very small couplings g even at g/4 = 0.1 the so-
obtained energy agrees to seven digits with the value in
Ref. [6].

In Fig. 1 we show the approach of n„ to the asymptotic
value given in Table I by plotting

~w = l(~„)Jv —~. l (18)

on a logarithmic scale. The periodic structure in the
data is caused by an oscillatory approach of (n„)z —n„

TABLE II. Ground-state energies from strong-coupling series
expansion. The lines labeled "lb" and "ub" are the lower and
upper bounds of Ref. [6].
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0.559 146 597 503 562 187 0
0.559 146 201 201 805 544 6
0.559 146 344 373 873 126 9
0.559 146 327 183 519576 3
0.559 146 327 183 519576 7

0.637 991 783 178 536025 3
0.637 991 783 171 236 149 3
0.637 991 783 171 280 381 8
0.637 991 783 171 278 528 3
0.637 991 783 171 278 529 6

0.696 175 820 765 191 5169
0.696 175 820 765 145 887 5
0.696 175 820 765 145 928 8
0.696 175 820 765 145 925 1

0.696 175 820 765 145 928 5

0.803 770 651 234 273 812 047 6
0.803 770 651 234 273 769 350 9
0.803 770 651 234 273 769 354 1

0.803 770 651 234 273 756
0.803 770 651 234 273 786
0.951 568 472 729 500 011 184 213 69
0.951 568 472 729 500 011 146 930 27
0.95 1 568 472 729 500 01 1 146 930 52
0.95 1 568 472 729 499 9
0.95 1 568 472 729 500 1

1Q-10

1P 5)

1P

1p 30
3 ~1/3

105

10"

1Q-15

10

1P 25
10

10-30

FIG. 1. Convergence of the variational perturbation expansion
for the strong-coupling coefficients no, n~, nq, and n](). The
solid straight lines are the best eyeball fits to the envelope of
the data. The dashed line in the n() data has a slope equal to
the theoretically expected value 9.7 [4].
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proven by R. Guida, K. Konishi, and H. Suzuk, University
of Genoa, Report No. th/9505084, 1995.

0

FIG. 2. Oscillatory behavior around the exponential approach
to the limiting value of no.

to zero (see Fig. 2). The envelope of these oscillations
follows the curve

exp Ko Ki N &/3 (19)

For the leading term no of the strong-coupling expansion,
the behavior (16) suggests a coefficient trt = 9.7 [4].
From the eyeball fits shown in Fig. 1 we extract ~~ =
9.42, 9.05, 8.05, and 7.18 for n, with n = 0, 1, 5 and 10,
respectively. These estimates should be taken with some
care, however, since we do not know how close we are
to the asymptotic regime for N = 65, . . . , 251, where the
natural expansion parameter is I/N'/ = 0.25, . . . , 0.16.
The N dependence of the coefficient no, for instance, is
just as well fitted by the dashed line with ~& = 9.7.

It is worth mentioning that variational perturbation
theory also permits calculating the imaginary parts of
energies on the left-hand cut in the complex coupling
constant plane [8]. The results not only improve the
semiclassical values [9] in the tunneling regime, but
also determine the imaginary part at large negative g
[8,10], where the decay proceeds by sliding rather than
tunneling.

Until now it has been unclear how the same method
converges for other potentials, such as x and x . Once
this is better understood, it may be possible to adapt the
calculation scheme to field theories and learn more about
strong interactions from perturbation expansions.

We are grateful to Dr. E.J. Weniger for useful
comments and references. W. J. thanks the Deutsche
Forschungsgemeinschaft for a Heisenberg fellowship.

Note added. —While this paper was being reviewed,
the exponential convergence behavior with superimposed
oscillations in Figs. 1 and 2 was quantitatively explained
by H. Kleinert and W. Janke, Phys. Lett. A 206, 283
(1995). The exponential convergence was rigorously
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