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Controlling Nonchaotic Neuronal Noise Using Chaos Control Techniques
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Chaos control techniques have been used to control a wide variety of experimental systems, including
physiological systems. Here chaos control, periodic pacing, and anticontrol were applied to a noise-
driven, nonchaotic neuronal model, and results similar to those recently reported for apparently chaotic,
in vitro neuronal networks were obtained. Similar results were produced when chaos control was
applied to a simple stochastic system. These suggest that the neuronal networks may not have been
chaotic and that chaos control techniques can be applied to a wider range of experimental systems (e.g. ,
stochastic systems) than previously thought.

PACS numbers: 87.10.+e, 05.45.+b, 07.05.Dz

Chaos control techniques have been applied to a wide
variety of experimental systems, including magnetoelas-
tic ribbons [1],electronic circuits [2], lasers [3], chemical
reactions [4], arrhythmic cardiac tissue [5], and sponta-
neously bursting neuronal networks [6]. An underlying
assumption in all of these studies is that the system be-
ing controlled is chaotic. However, the identification of
chaos in experimental systems, particularly physiological
systems, is a difficult and often misleading task [7]. Here
we apply chaos control techniques and related methods to
a noise-driven, nonchaotic neuronal model and compare
the results to those reported by Schiff et al. [6] for appar-
ently chaotic, in vitro neuronal networks.

Schiff et al. [6] studied the firing behavior of neuronal
networks in hippocampal slices of rat brain. They gen-
erated noiselike (possibly chaotic) burst-firing activity in
these networks by exposing the hippocampal slices to K+-
enriched artificial cerebrospinal ftuid. As a simple ana-

log to this system, we considered the firing behavior of
a noise-driven neuron. Specifically, we implemented the
FitzHugh-Nagumo (FHN) neuronal model [8] as given by
the following equations:

ev = v(v —a) (1 —v) —w + Vg + g(t),
= v —w —b,

where v(t) is the voltage variable, w(t) is the recovery
variable, V~ is a tonic activation signal of 0.2 V, $(t)
is Gaussian white noise with zero mean and standard
deviation = 6.325 X 10 V [9], e = 0.005, a = 0.5,
and b = 0.15. The FHN equations were solved numeri-
cally [10] using an algorithm developed by Mannella
and Palleschi [11] for stochastic differential equations.
The interspike intervals (ISIs) were computed using the
method described by Longtin [8]. In the absence of
additive noise, the model fired regularly with a period of
0.761 s. Phase-plane analysis showed that the additive
noise simply caused the firing period to fIuctuate about
its mean value. The periodic orbit was structurally
preserved. There were no global bifurcations; thus, the
additive noise did not induce chaos.

To evaluate the presence of chaos in the aforemen-
tioned neuronal networks, Schiff et al. [6] analyzed
the first-return maps of the burst ISIs for different
hippocampal-slice preparations. According to their crite-
ria, a system could be considered chaotic if its ISI time
series contained recurrent sequences that approached an
unstable periodic IIip-saddle fixed point (in the first-return
map) along a stable direction (manifold) and departed
from it in an exponential fashion along a locally linear
unstable manifold. The ISI first-return maps for the in
vitro neuronal networks of Schiff et al. [6] satisfied the
above chaos criteria. However, we found that the ISI
time series from our noise-driven, nonchaotic neuronal
model also occasionally satisfied these criteria, as illus-
trated in Fig. 1. Figure 1(a) is an ISI first-return map
showing eight sequential points (numbered 1 —8). Points
2 —8 define an apparent Rip-saddle unstable manifold
because the sequence alternates on either side of the
line of identity (where ISI„=ISI„&)while diverging
exponentially away from it along a nearly straight line.
The intersection of the line of identity with a straight
line fit to the points of the apparent unstable manifold
defines the location of the apparent unstable periodic fixed
point. Point 1 is considered to lie on an apparent stable
manifold because point 2 lies near the apparent unstable
periodic fixed point. Figure 1(b) is an ISI first-return
map showing recurrent sequences (from a single ISI time
series) that approached and exponentially diverged from
an apparent unstable periodic fixed point. Note that
each sequence starts in a region near the apparent stable
manifold. The second point for each sequence lies near
the apparent unstable periodic fixed point. Each sequence
then departs from the apparent unstable periodic fixed
point in exponentially diverging jumps on alternating
sides of the line of identity along the apparent unstable
manifold. It should be noted that the plots in Fig. 1 are
similar in structure to those in Fig. 2 in Ref. [6].

We use the term "apparent" to describe the candidate
fixed points in our model's output because the aforemen-
tioned phase-plane analysis showed that for the parameter

2782 0031-9007/95/75(14)/2782(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 14 PH YSICAL REVIEW LETTERS 2 OcTonER 1995

values used, the model does not have any unstable peri-
odic fixed points. To confirm this finding, we generated
ten 5000-ISI time series from the noise-driven model neu-
ron. For each ISI time series, we then generated a set
of ten randomly shuffled surrogate data sets. We found
that the probability of finding candidate unstable periodic
fixed points [12] in the original time series was not statisti-
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FIG. 1. Plots of interspike intervals ISI, versus the previous
interva) ISI„i for the noise-driven, nonchaotic neuronal model
[Eqs. (1)] without control. (a) First-return map showing eight
sequential points (numbered 1 —8), which approached and
exponentially diverged from an apparent unstable periodic fixed
point. (b) First-return map showing recurrent sequences (from
a single ISI time series), which approached and exponentially
diverged from an apparent unstable periodic fixed point. The
starting point for each sequence, numbered 1 in each, began at
spike numbers 50 (circles), 105 (triangles), and 788 (squares),
out of a total series of 791 spikes. The apparent stable manifold
is indicated by arrows pointing towards the apparent unstable
periodic fixed point, and the apparent unstable manifold is
indicated by arrows pointing away from the apparent unstable
periodic fixed point.

cally significantly different from the probability of finding
such points in the respective surrogate data sets (p values
ranged from 0.37—0.90, with mean 0.61). These results,
together with those in Fig. l, demonstrate that apparent un-
stable periodic fixed points can arise simply by chance in
our noise-driven, nonchaotic neuronal model, and there-
fore, the chaos criteria used by Schiff et al. [6] are not
sufficient for the definitive identification of deterministic
chaos.

The original chaos control technique developed by Ott,
Grebogi, and Yorke (OGY) [13] is based on the fact that
there are an infinite number of unstable periodic orbits
embedded within a chaotic attractor. With this approach,
a chaotic system is stabilized about one of these periodic
orbits by making small time-dependent perturbations to an
accessible system-wide parameter such that the system's
trajectory is attracted towards the stable manifold of the
desired unstable orbit. The OGY technique is useful
in many situations because it requires no knowledge of
the underlying system equations. Recently, the OGY
technique was modified so that chaos control could be
applied to systems where no system-wide parameters are
readily available for manipulation. This modified method,
which is called proportional perturbation feedback (PPF)
control [5], involves the application of perturbations to
the system variable to be controlled. With this approach,
the goal is to apply perturbations so as to place the
system's state point onto the stable manifold of a desired
unstable periodic fixed point. With excitable systems
(e.g. , neurons), an electrical stimulus is used to shorten
a predicted ISI (by inducing a premature spike at a
calculated time) such that the system's state point is
placed onto the stable manifold.

Schiff et al. [6] implemented PPF control in in vitro
neuronal networks by delivering precisely timed electrical
stimuli to their hippocampal-slice preparations. Similarly,
we applied PPF control to our noise-driven, nonchaotic
neuronal model. For the trial shown in Fig. 2, the
apparent unstable periodic fixed point and set of apparent
stable and unstable manifolds were determined during the
first temporal region A, prior to control initiation [14].
PPF control was then activated for 200 points (region 8
in Fig. 2) [15]. We achieved a level of control success
(Fig. 2), which was similar to that obtained by Schiff
et al. [6] for in vitro neuronal networks (see Figs. 3 and
4 in Ref. [6]). For instance, in both our study and the
study of Schiff et al. [6], the width of the ISI band (i.e.,
the amount of ISI fiuctuation) was reduced considerably
from the precontrol stage to the PPF control stage.

To compare PPF control with simple periodic pacing,
we repeatedly stimulated the noise-driven, nonchaotic neu-
ronal model at a constant pulse interval for 200 points
(region C, Fig. 2), following 100 points without control
(second region A). (The periodic-pacing pulse interval
was equal to the value of the apparent unstable periodic
fixed point used for PPF control. ) Our periodic-pacing re-
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FIG. 2. Plot showing interspike intervals ISI„for the noise-
driven, nonchaotic neuronal model without control (temporal
regions A), and with proportional perturbation feedback (PPF)
control (region B), periodic pacing (region C), and anticontrol
(region D)
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FIG. 3. (a) Plot showing interspike intervals ISI„for the
noise-driven, nonchaotic neuronal model without control (tem-
poral regions A) and for three distinct periods of PPF control
(regions B) For each PPF .control region, a new apparent unsta-
ble periodic fixed point and set of apparent stable and unstable
manifolds were determined during the preceding control-free
region. (b) Plot showing three distinct periods of PPF control
(regions B) of simulated interspike intervals ISI„produced by
the simple stochastic system [Eq. (2)].

i.e., larger fixed points were associated with decreased
levels of control success [similar to the results shown
in Fig. 5(b) in Ref. [6]]. The differences between the
respective control regions can be attributed solely to the
quantitative differences between the values of the selected
fixed points; the response of the system to PPF control
was not qualitatively different for the different control
regions. Note that the spread (range) of ISIs below each
fixed point was not significantly different from that of
the uncontrolled regions. [Similar results can be seen in
Fig. 5(b) in Ref. [6].] PPF control thus largely served
to eliminate ISIs that were larger than the value of the
selected fixed point. Similar results could have been
obtained with demand pacing, which is a simple, well-
known technique [19,20] that is not based on chaos theory

2784

suits (Fig. 2) were similar to those reported by Schiff et at.
[6] for in vitro neuronal networks (see Fig. 3 in Ref. [6]).
In both our study and the study of Schiff et al. [6], peri-
odic pacing produced qualitatively different results from
PPF control, e.g. , periodic pacing frequently allowed ISIs
that were considerably larger than the stimulation interval.

It has been suggested that the underlying existence of
low-dimensional chaos in the nervous system may offer
the opportunity to desynchronize the periodic behavior
typical of epileptic seizures [16]. In line with this hy-
pothesis, Schiff et al. [6] showed that a technique called
anticontrol could be used to reduce the periodicity of
their hippocampal-slice preparations. Anticontrol [6,17],
which is essentially the inverse of chaos control, increases
the aperiodicity of a system by placing its state point away
from the unstable periodic fixed point. We applied anti-
control to our noise-driven, nonchaotic neuronal model for
200 points (region D, Fig. 2), following 100 points with-
out control (third region A). The algorithm for anticontrol
was the same as the algorithm for PPF control except that
the system's state point was placed onto an unstable repel-
lor line [18] instead of the apparent stable manifold. The
anticontrol results shown in Fig. 2 were similar to those
reported by Schiff et al. [6] for in vitro neuronal networks
(see Fig. 4 in Ref. [6]); i.e. , anticontrol reduced the ISI
periodicity in the model neuron.

With PPF control, a system is controlled, in principle, by
exploiting the features of one of its unstable periodic fixed
points. It was surprising therefore that PPF control could
effectively control our noise-driven, nonchaotic neuronal
model, given that the model does not have any unstable
periodic fixed points. Figure 3 clarifies this apparent
contradiction. In Fig. 3(a), it can be seen that in repeated
control attempts, the effectiveness of control varied as
new apparent unstable periodic fixed points were defined,
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and that does not require the determination of stable and
unstable manifolds —with demand pacing, stimuli are used
to prevent the ISIs of a system from exceeding some
predetermined value.

In order to explore these points further, we considered
the following simple stochastic system (which models the
behavior of our noise-driven model neuron to the lowest
order):

ISI„= ISI + g„,
where ISI is a variable that we take to represent the
current interspike interval, ISI is a constant parameter
that represents the mean value (0.761 s) of the interspike
interval, and g„is Gaussian white noise with zero mean
and standard deviation = 0.02 s [9]. By design, this
stochastic system does not have any unstable periodic
fixed points, and it is incapable of displaying deterministic
chaos. However, as with our noise-driven model neuron,
this system does display (by chance) apparent unstable
periodic fixed points. We applied PPF control to this
simple system [21] and obtained results [Fig. 3(b)] that
were similar to those described above for our noise-driven,
nonchaotic neuronal model [Fig. 3(a)] and those reported
by Schiff et al. [6] for in vitro neuronal networks [see
Fig. 5(b) in Ref. [6] ]. This work clearly demonstrates that
PPF control can control a stochastic system, one that does
not have any unstable periodic fixed points, with a level
of success similar to that reported by Schiff et al. [6].
These findings thus provide an alternative explanation for
some of the results reported by Schiff et al. [6], namely,
that their hippocampal-slice preparations may have been
stochastic in nature. This point is corroborated by a recent
study [22], which showed that the majority of the ISI time
series from similar hippocampal-slice preparations failed
to demonstrate evidence of deterministic structure.

The recent success of chaos control in physiology has
led to speculations that these techniques may be clinically
useful [5,6,23]. The present findings do not discount that
possibility; rather, our work suggests that chaos control
techniques can be applied to a wider range of experimental
systems (e.g. , stochastic systems) than previously thought.
Moreover, because PPF control can be applied to both
chaotic and nonchaotic systems, the difficult problem of
distinguishing between deterministic chaos and noise in
physiological systems [7] appears to be a nonissue for this
application. Clearly, however, the nature of the control
success will depend critically upon the characteristics (e.g. ,
the presence of unstable periodic fixed points) of the
system to be controlled.

We thank C. Chow for useful discussions and T. Imhoff
for his assistance with FHN model implementation. This
work was supported by the National Science Foundation.
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