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Linear Viscoelasticity of Colloidal Hard Sphere Suspensions near the Glass Transition
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The frequency-dependent viscoelastic shear modulus of concentrated suspensions of colloidal hard
spheres is shown to be strongly modified as the volume fraction approaches the glass transition.
The elastic or storage component, G', becomes larger than the viscous or loss component, G". The
frequency dependence of G' develops a plateau while that of G" develops a minimum. We propose
a physical model to account for these data, using a description of the glasslike behavior based on
mode-coupling theory, and a description of the high-frequency behavior based on hydrodynamic flow
calculations.

PACS numbers: 83.50.Fc, 64.70.Pf, 82.70.Dd, 83.70.Hq

Suspensions of solid particles with an interaction po-
tential determined solely by excluded volume, or hard
spheres, represent one of the most important classes of
colloidal dispersions [1]. Understanding their behavior
is an essential first step in understanding more complex
suspensions of technological significance. Of particular
importance are their rheological properties, as they con-
trol the How behavior as well as the viscosity and the
elasticity of the suspension. A key measure of these are
the linear viscoelastic moduli which determine the re-
sponse of the suspension to small oscillatory shears which
weakly perturb the equilibrium structure. At low frequen-
cies, shear-induced perturbations are relaxed by Brownian
motion; this dissipates energy, and the suspension is pre-
dominantly viscous. However, at higher frequencies, the
perturbations can no longer be relaxed in the period of the
oscillation; the change in the equilibrium configuration re-
sults in energy storage and hence in an increase in the
elastic component. The characteristic frequency is deter-
mined by the ratio of the convection rate due to the shear
to the diffusional relaxation rate, or the Peclet number
Pe = a2j /D„where a is the particle radius, j the shear
rate, and 0, the short-time diffusion coefficient which is
dependent on the particle volume fraction, @. The mag-
nitude of the elasticity is set by the temperature, kHT/a,
the only energy density scale in the system. Both the vis-
cosity and the elasticity should diverge as the volume frac-
tion approaches random close packing P, = 0.64, where
the packing constraints no longer allow for particle mo-
tion. Nevertheless, within this picture, data for the stor-
age and loss moduli for different @ and T should all scale
onto a unique pair of curves. Exactly this sort of behavior
has been reported in earlier important studies of the linear
viscoelasticity of hard spheres [2,3].

While very basic and appealing, this picture neglects
an essential feature of hard spheres: their phase behav-
ior. Highly monodisperse particles undergo an entropi-
cally driven liquid-solid transition [4], forming structures
with long range order at @ = 0.49. When quenched
from a disordered configuration, crowding of the parti-

cles leads to a liquid-glass transition at @g = 0.56 [5].
Less monodisperse spheres do not exhibit the ordered
solid phase but do form colloidal glasses, albeit with a
somewhat different @s [6]. The liquid-glass transition
in hard sphere colloids has been studied extensively with
light scattering [7]. However, a colloidal glass is a solid,
even though it exists at volume fractions well below ran-
dom close packing. As a result, the glass transition should
have profoundly affected the linear viscoelasticity, but this
has never been investigated.

In this Letter we show that the liquid and glass phase be-
havior of hard spheres dramatically affects their viscoelas-
ticity; as @ approaches the colloidal glass transition, the
structure of the suspension results in a strongly frequency
and volume fraction dependent contribution to both the
storage modulus, G'(co), and the loss modulus, G"(co). To
account for this behavior, we present a physical model that
combines a description of the onset of the glass phase using
mode-coupling formalism with the high-frequency contri-
bution of Brownian motion. The observed behavior pre-
cludes the simple scaling of the data reported previously,
and directly probes the effects of the phase behavior.

We used suspensions of uncoated silica spheres in ethy-
lene glycol, which interact as hard spheres [3]. Their poly-
dispersity was about 20%, which prevented crystallization;
however, they could form a colloidal glass. Their hy-
drodynamic radius was measured as a = 0.21 p, m, using
dynamic light scattering from a dilute suspension. Mea-
surements of G'(co) and G"(co) were performed with a
strain controlled rheometer, using a double wall Couette
geometry, and at T = 23 C, where the solvent viscosity
was go = 17 cP. The most concentrated suspension was
prepared by centrifugation and had a volume fraction of
P = 0.56, determined with pycnometric and vacuum des-
iccation techniques. We lowered @ by diluting with pure
ethylene glycol supernatant recovered from the centrifu-
gation. Although samples of higher concentration could
be obtained by further centrifugation, their very long re-
laxation times made them impossible to load in the cell,
precluding their study.
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FIG. 1. The dependence of the storage (solid symbols) and
loss (open symbols) moduli on the maximum applied strain
for several different volume fractions. The measurements are
performed at a frequency of 1 rad/s. Note the large increase
with tt and the dominance of the storage modulus at high P.

Typical results for the storage (closed points) and loss
(open points) moduli, as a function of applied stain y
measured at a frequency of or = 1 rad/s, are shown
in Fig. 1 for several different volume fractions. For
sufficiently small strains, both G' and G" are independent
of y. We observe a dramatic onset of a dominant storage
modulus as P is increased over a very small range. At
P = 0.50, the loss modulus is larger than the storage
modulus, and the suspension is primarily viscous. By
contrast, at P = 0.56, the storage modulus is larger, and
the suspension is dominantly elastic. Furthermore, the
strain where the response becomes y dependent decreases
with increasing P. In addition, for the larger @, the
apparent loss modulus increases, exceeding the storage
modulus at higher y, indicating that the elastic behavior
is limited to low strains. These results underscore the
importance of a sufficiently low strain to ensure a linear
response.

The frequency dependence of G'(or) and G"(or) for dif-
ferent P is shown in Figs. 2(a) and 2(b), respectively. At
the lower P, G"(or) is dominant, and both moduli in-
crease with frequency. However, as P increases, G'(or)
begins to dominate over an extended range of frequencies;
moreover, it develops a plateau where it varies only very
slowly with frequency, while G"(or) exhibits a definite
and reproducible minimum. At higher frequencies, both
moduli begin to increase, with G "(or) rising more sharply,
ultimately overtaking G"(or). This behavior is dramati-
cally different from the scaling form previously reported.

To understand the data, we develop a physical model
that incorporates the relevant features of the scaling
picture, but also includes the consequences of the phase
behavior of the hard spheres. We hypothesize that the
increase in the elasticity and the plateau behavior of
G'(or) rellects the effects of the approach to the colloidal
glass transition at @g. The essential physics that must be
included describes the relaxation of density fluctuations of
the spheres, which has been probed with light scattering
[7]. At very short times, the relaxation of these density
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fluctuations reflects the localized motion of the individual
spheres, entailing the full details of the hydrodynamic
interactions. However, at longer times particles are
trapped in cages formed by their neighbors. Below Ps,
the cages slowly break up, making the system ergodic.
By contrast, above Pg, the cages cannot break up, and
the system is nonergodic. Changes in the configuration
of these cages provides a mechanism for energy storage
and dissipation, contributing to the moduli; the evolution
of these cages determines the frequency dependence. This
sort of particle dynamics is observed in these samples with
diffusing wave spectroscopy [8].

To describe the cage dynamics, we use the formal-
ism of mode-coupling theory [9,10], which describes light
scattering data from hard spheres near Pg [7]. Within
mode-coupling theory, the cage dynamics are described
by the p decay. We take advantage of a feature predicted
by mode-coupling theory near Ps: The temporal auto-
correlation functions of all variables coupled to density
fiuctuations are identical in form. Thus we assume that
the stress autocorrelation function has the same functional
form as the density autocorrelation function that accounts
for the light scattering data, and use the generic, asymp-
totic mode-coupling form for the p regime on the liquid
side of Pg [7,9],

( Cl

C„(t) = f„+h„c
g/

(I)(t
Here the mode-coupling parameters include the nonergod-
icity parameter, f;„the critical amplitude and scale, h„
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FIG. 2. The frequency dependences of the (a) storage and
(b) loss moduli for different volume fractions. All the
measurements were performed at sufficiently low strains to be
in the linear regime. The solid lines represent the fit to the
model discussed in the text.
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and c, and the P-scaling time, t M. ode-coupling the-

ory places significant constraints on the behavior of these
parameters; it predicts that f;, and h„are @ independent,
while c~ —o' and t —cr', where the separation
parameter is tr = (Pg —@)/Pg. It also predicts a' =
0.301, b' = 0.545, and B = 0.963 for hard spheres [9].
The near-glass contribution to the complex shear modulus
is given by G'(cu) = Go[i tu C,",(tu)], where C,",( cu) is the
unilateral complex Fourier transform of the stress autocor-
relation function, and Go is the thermodynamic derivative
of the stress with respect to the strain, which sets the scale
of the stress relaxation. The real and imaginary parts of
G"'(tu) contribute to the storage and loss moduli, respec-
tively.

The high-frequency behavior is not described within
mode-coupling formalism. Instead, we incorporate the
effects of energy storage due to Brownian motion by using
the form calculated for a diffusional boundary layer; this
ignores lubrication effects, which will ultimately cause G'
to reach a constant plateau as tu increases [11]. Since
our highest normalized frequencies are large, tea /D, —
10' —10, we consider only the high-frequency asymptotic
form predicted by flow calculations [11] and by kinetic
theory [12],

GD(~) s 0 g(2a 4)l ~rD] (2)5~ a3
where gati

= a /D, is the diffusional time determined
by the p-dependent short-time diffusion coefficient. For
these high volume fractions, we approximate the ra-
dial pair distribution function at contact by g(2a, @) =
0.78/(0. 64 —P), consistent with computer simulations
that indicate a divergence at random close packing [1,13].
Physically, GD(tu) reAects the additional driving force for
diffusional motion that arises from the hard sphere inter-
action potential, which prevents the particles from touch-
ing when the shear makes them approach their neighbors.
Because of causality, the Kramers-Kronig relations re-
quire a similar contribution to the loss modulus, Gti(«u) =
Gti(tu). We must also include the contribution of the
high-frequency suspension viscosity, Gs'(tu) = g cu.

To obtain the complete elastic modulus, we sum the
individual contributions; this implicitly assumes that the
individual stress autocorrelation functions are statistically
independent, rejecting their significantly different fre-
quencies. We obtain

7ra'
G'(cu) = Gp + G I (1 —a') cos ~( cu)«'
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where I is the gamma function. The plateau modulus,
Gp = Gof;„contributes only to G'(cu) and represents
the overall magnitude of the near-glass elasticity. More-
over, as expected from the mode-coupling description, the
storage modulus has an inAection point at the plateau
value, while the loss modulus has a minimum; the fre-
quency of these is set by 1/« T.he viscoelastic ampli-
tude, G = Gob„c, determines the degree of variation
of G'(«u) about its plateau value and the magnitude of
G"(cu) at the minimum. To compare this model with
our data, we simultaneously fit both G'(cu) and G"(cu)
by Eqs. (3) and (4) for each volume fraction, using Gp,
G, t, D„and q as fitting parameters. As shown by
the solid lines in Fig. 2, excellent agreement is obtained
for virtually all of the data; in particular, this model cap-
tures correctly the plateau behavior observed in G'(tu).

Although our model provides an excellent description
of the form of the data, it does possess many fitting
parameters. Thus an additional critical test of its validity
is the P dependence of these parameters; the physics
of the diffusional boundary layer and mode-coupling
theory places severe constraints on their behavior. The
high-frequency behavior is dominated by g and D, ; in
fact, the data cannot be adequately fit without including
their contribution. However, their P dependence is
known independently from theoretical predictions and
experimental measurements of the viscosity and self-
diffusion coefficients. In Fig. 3(a), we plot iso/il (open
points) and D, /Do (solid points) as functions of

g/—Br(1+ b').os ( «.)-"' + G' ( ),
2
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FIG. 3. The P dependence of the parameters obtained by
the fit to the model. (a) tlo/r«„(open circles) and D, /Do
(solid squares); the solid line is a published prediction of the
viscosity [15]. (b) (G /Gp)~ (solid diamonds) and (to/t )"
(open diamonds), where to = 2m sec, with fits to the linear
dependence expected from mode-coupling theory, giving @„=
0.58. (c) The plateau modulus Gp.

2772



VOLUME 75, NUMBER 14 PHYSICAL REVIEW LETTERS 2 OCTOBER 1995

where Do = k&T/6zrrioa. They are nearly identical, as
expected over this range of @ [14]; moreover, they are
consistent with independent measurements and computer
simulations for zlo/g [15], as shown by the solid line.
Thus we conclude that the contributions of the diffusional
boundary layer and the suspension viscosity included in
our model correctly describe the high-frequency behavior
of the data.

The remaining three parameters reAect the contribution
of the mode-coupling theory to the viscoelastic modulus
and thus should be subject to the constraints of its pre-
dictions. At the lowest volume fraction, the contribution
of the near-glass modulus is negligible. However, at the
higher volume fractions, we find that both GI and G in-
crease dramatically with P. Nevertheless, mode-coupling
theory predicts that the @ dependence of their ratio is de-
termined by (G /Gp) —c —o., and thus should go
linearly to zero as P approaches @s. This is indeed ob-
served, as shown in Fig. 3(b), where we plot the P de-
pendence of (Go/Gp) with solid points. Furthermore,
mode-coupling theory predicts that t —o. below the
glass transition. Thus in Fig. 3(b), we plot with open
points the P dependence of (to/t ) ', where we have
taken to = 2~ sec for convenience; again, the predicted
linear decrease is observed. These data are consistent
with Ps = 0.58, as shown by the solid lines which are
fits with the value of Ps constrained to be the same for
each parameter. We emphasize, however, that uncertainty
in the fitting parameters, and in our knowledge of the ex-
act volume fraction, preclude a precise determination of
Pg and comparison to other systems. Nevertheless, these
results support our hypothesis that the low-frequency be-
havior of the viscoelastic moduli reAect the approach to
glass transition and are correctly modeled by the predic-
tions of mode-coupling theory.

Finally, we also show in Fig. 3(c) the @ dependence
of the plateau modulus, Gp = Gof;, . It displays the
expected behavior; it goes to zero as @ decreases, and
diverges with increasing @. We expect Gp to depend
on the amount of free volume in the system. Thus it
should diverge at @, rather than Ps, but unfortunately
the experimental uncertainty in Pg precludes an accurate
assessment of this. We note, however, that the decrease
in the maximum y for linear moduli exhibited in Fig. 1

suggests a vanishing free volume. There is one theoretical
suggestion that the zero frequency modulus above the
glass transition should depend on the derivative of the
radial distribution function, dg(r, P)/dr, evaluated at
contact, r = 2a [16]. This prediction might also be
expected to account for Go near Pg, however, the
dependence of this derivative is not known.

Our data strongly suggest that the phase behavior of
hard spheres has a pronounced effect on their viscoelastic-
ity, which is dramatically modified as the glass transition

is approached. Moreover, they show that a single param-
eter, Pe, is not sufficient to scale the data for all P and
T. The temperature dependence of G~ and G~ should
depend primarily on that of g which controls D, and
hence that time scale, consistent with the simple scaling.
By contrast, the contribution of the near-glass structure
depends on the relaxation of cages having much larger
length scales, and this could conceivably have a very
different temperature dependence. This may account for
why the behavior reported here was not observed in pre-
vious experiments [2,3], which investigated the viscoelas-
tic behavior at higher frequencies or lower temperatures.
Finally, while our physical model provides an excellent
account of the data, it is nonetheless a phenomenological
model, since the mode-coupling contribution is based on
an analogy to the density correlation function. Thus these
data do not constitute a test of mode-coupling theory.
Nevertheless, the success of our model will, we hope, pro-
vide the impetus for more microscopic calculations of the
shear viscoelasticity predicted by mode-coupling theory
for hard sphere suspensions. This would then provide an
important additional test of the validity of the theory.
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