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Self-Similarity and Localization
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The localized eigenstates of the Harper equation exhibit universal self-similar fluctuations once the
exponentially decaying part of the wave function is factorized out. For a fixed quantum state, we
show that the whole localized phase is characterized by a single strong coupling fixed point of the
renormalization equations. This fixed point also describes the generalized Harper model with next
nearest neighbor interaction below a certain threshold. Above the threshold, the fluctuations in the
generalized Harper model are described by a strange invariant set of the renormalization equations.
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In the extensively studied Harper equation [1]

+ P; ~ + 2Acos[2vr(itr + @)]P; = EP, , (1)

with cr equal to the inverse golden mean, most of the
attention has been focused on the onset of metal-insulator
transition at A, = 1, where the quantum states and
the spectrum exhibit self-similarity and are multifractal
[2]. In this paper, we show that the fluctuations in
the localized wave functions of the model for
1 possess the same complexity and richness as the
critical states. The universal self-similar fluctuations at
the band edges are determined by the strong coupling
fixed point of a renormalization operator. We solve for
this nontrivial fixed point and obtain the universal scaling
ratio for the fluctuations. In addition, the stability of the
fixed point is analyzed by linearizing the renormalization
transformation. In particular, we study the perturbation
associated with a generalized Harper equation describing
a two-dimensional electron gas with next nearest neighbor
(NNN) interaction in the presence of an inverse golden
mean magnetic Ilux [see Eq. (12)] [3,4]. The universality
class for the fluctuations turns out to be unaltered as long
as the NNN coupling is below a certain threshold. Above
the threshold, the situation is a lot more complicated as the
renormalization How seems to converge on an invariant
strange set.

The wave function P, is written as

(2)

where y is the Lyapunov exponent which vanishes in the
extended (E) and the critical (C) phase. The localized (L)
phase is characterized by a positive Lyapunov exponent
corresponding to the exponential decay of the wave func-
tion. It is assumed that the phase @ in Eq. (1) is chosen so
that the main peak of the wave function is at i = 0 so that
yi; is bounded [5,6]. For the Harper equation it has been
shown analytically that y = In(A) in the L phase [3,7].

We study this TBM using our recently developed decima-
tion approach [5,9], where all sites except those labeled
by the Fibonacci numbers F„are decimated. At the nth
decimation level, the TBM is expressed in the form [10]

f„(i)yi(i + F„+,) = yi(i + F„) + e, (i)Ti(i). (4)

The additive property of the Fibonacci numbers provides
exact recursion relations for the decimation functions e,
and f„:

Ae„(i)
1+ Af„(,)

f.— ( + F.)f.( + F.)
1 + Af„(i)

A=e, t(i+F)+ f„~(i+F)e,(i+F).

(5)

(6)

In this approach, the critical phase with self-similar
wave functions is characterized by a nontrivial asymptotic
p cycle (with the length p equal to 3 or 6 for the
Harper model) for the decimation functions [5]. On the
other hand, the asymptotic behavior of e„(0) and f„(0)
determines the universal scaling ratios

g, = Itm ~~(F„„,)/q(0)~, I = O, . . . , p —l. (7)

We apply the decimation method to study the Auctu-
ations of the L phase where Eq. (3) provides the initial
conditions for the decimation functions e2(i) and f2(i) in

Therefore, the function g; describing the fluctuations in
the exponentially decaying wave function satisfies the fol-
lowing tight binding model (TBM) for i ) 0 [8]:

1—
Ti, +t + Ayi; t + 2Acos[2~(icr + P)]yi; = Eyi; .

(3)
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addition to the trivial conditions eI —= 0 and fI =— 1. As
f2 —1/A ( 1 in the L phase, the recursion relations sug-
gest that f„—1/A "-', i.e. , f„~0 as n ~ ~. This was
confirmed by the numerical iteration of Eqs. (5) and (6).
Because f„vanishes asymptotically, the scaling ratio j~
can be obtained directly as the limit of ~e„„+~(0)~ as n

tends to infinity. At the band edges, we find that ~e„(0)~
converges to the fixed point 0.1726 for all A ) 1. There-
fore, the fjuctuations in the localized wave functions are
universal throughout the I. phase and are determined by
the strong coupling fixed point of the system (see Fig. 1).

Taking the limit A ~ ~, the TBM reduces to

e, + i (x) = —e„)(o. x + o-)e, (—o-x) . (10)

The high n limit can be studied by introducing the
renormalization operator

T[u(x), t(x)] = [t(—o-x), —u( —o.x —1)t(—o.x)]. (11)

as n ~ oo for any A ~ 1 and the limit A ~ oo, where
f„—= 0 for all n ) 1. By replacing the discrete lattice
index i by the continuous renormalized variable x =
(—o.) "(io.), where ( ) denotes the fractional part [5],
Eq. (9) transforms into the form

'g; —i + v cos[27r(to + @)]'g; = e 71;,

with ij = 2 and e = limx E/A. For the lower (upper)
band edge, e is equal to —2 (2). At the band center,
e = 0 and Eq. (8) is identical to the quantum Ising model
in a quasiperiodic transverse field at the onset of long
range order [5]. Therefore, the fiuctuations at the band
center in the I. phase are described by the conformal
universality class of the Ising model [5]. ~e„(0)~, and thus
the scaling factor g, exhibits asymptotically a universal 3-
cycle 0.2307, 0.5904, and 0.2683.

In order to solve for the strong coupling fixed point at
the band edges (the 3-cycle at the band center could be
analyzed in a similar way), we first notice that Eq. (5) can
be simplified into

+1(t) e —1(t + F )e (t)

assuming that f„—= f„ i —= 0. Therefore this simple
recursion relation describes both the asymptotic behavior
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FIG. 1. The absolute value of the universal fluctuations of a
band-edge eigenstate in the L phase of the Harper equation.
Note that unlike the critical phase wave function, the L phase
fluctuations are not symmetric about the secondary peaks.

The importance of this operator follows from the fact that
the recursion (10) can be represented as the operation
by T on the pair [e„ I( o.x—), e„(x)]. Moreover, the
limiting function e*(x) = lim„e„(x) corresponds to
the fixed point [e'(—o.x), e*(x)] of the operator T. An
initial estimate of the fixed point can be obtained by
applying T subsequently on the pair [e2(—o.x), e3(x)]
obtained from Eq. (8). It turns out that it is easier to
expand 1/e*(x) than e*(x) (they both satisfy the same
fixed point equation), so we solve for the coefficients
of 1/e*(x) by truncating the series and applying the
Newton method to determine the fixed point of T. The
power series is convergent in the domain ~x~ ~ 1, and
we can obtain better and better estimates for the principal
scaling ratio g = ~e*(0)~ by increasing the order of the
power series. Including terms up to the order x
we observe that e*(0) approaches —0.172 586 410 945 ~
10 ' in agreement with the result obtained by iterating
the decimation equations [11].

The linear stability analysis at the fixed point shows that
the renormalization operator T has the unstable eigenval-
ues ~o. z and ~o. ' (o. ' is a double eigenvalue) and
the marginal eigenvalue —1. In addition, there is a set of
stable eigenvalues which are powers of the inverse golden
mean. It should be noted that our renormalization operator
resembles the one of Ostlund and Pandit [6] for the study of
the critical point of the Harper equation. Although in their
case t and u are 2 X 2 matrices, the eigenvalue analysis is
similar in their and our cases. The variation of e or Ij in
Eq. (8) leads to an asymptotic escape from the fixed point
in the eigendirection associated with the unstable eigen-
value o. 2. In the same way, the variation of P can be
related to the eigenvalue —o '. We expect that some of
the remaining unstable eigenvalues and the marginal one
are not "physical" because they represent variations which
are inaccessible by using a TBM to define the pair [u, t)
(see Ref. [6]). We could further generalize the analysis
by considering the direction of a finite decimation func-
tion f„ in function space, but as explained previously, the
perturbation in that direction is expected to be irrelevant
(with eigenvalue 0).

It is a characteristic feature of the strong coupling
fixed point that all eigenvalues are powers of the golden
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mean. In the critical case, where the spectrum is singular
continuous, there is a nontrivial eigenvalue associated
with change of energy. We do not expect such an
eigenvalue to appear in the localized phase where the
spectrum is pointlike. In fact, the appearance of the
eigenvalue cr can be traced to the dual system [7] for
which A ~ ~ is the weak coupling limit [6].

We next study the generalized Harper equation

(1 + n cos[2~(o.(i + 2)+@)]}P;+~
+(1 + n cos[2~(cr(i —z)+@)]}P;

+2Acos[2~(o. i + P)]P; = EP; (12)

describing Bloch electrons on a square lattice with nearest
neighbor (NN) coupling anisotropy A and NNN coupling
n. This model was recently studied using analytical and
numerical methods [3] as well as applying the decimation
scheme [4]. The model was found to exhibit a fat C
phase provided n ~ 1 and A ~ n. In the fat C phase
the model exhibited various new universality classes: At
certain specific values of A and o. , the self-similarity of
the critical wave functions was described by higher order
unstable (with respect to a change of parameter values)
limit cycles of the renormalization group (RG) equations,
while for arbitrary values of the parameters, the RG Row
converged on an invariant set. This implied that the
fractal characteristics of the wave functions were not self-
similar. Since the cycle lengths were as high as 24, the
question of which parameter values exhibited a limit cycle
and which converged on strange set remained somewhat
open.

We now apply the procedure outlined above to study
the fluctuations in the L phase of the generalized Harper
equation (12). We again make use of the explicit formu-
las of the Lyapunov exponents as obtained from Ref. [3].
Numerical iteration of the decimation equations shows
that for 0 ~ n & 1, the fluctuations in the L phase are
determined by the same strong coupling fixed point as for
the Harper equation. For n ~ 1, the decimation func-
tions for the fIuctuations in the L phase are found to Row
away from the strong coupling fixed point. However, in
analogy with the Harper case, the asymptotic behavior of
the decimation functions appears to be independent of the
value of A throughout the L phase and is described by the
same renormalization equations (10) and (11). That is, for
all values of n, the decimation function f„re nromlai ezs
to zero. Thus we can focus on the limit A ~ ~, where
E/A tends to ~2 for the band edges, and the generalized
TBM for n ~ 1 reduces to (@ is 1/2 for the negative and
0 for the positive band edge)

t~ 1 + n cos[2~o.(i —2)]}g; ~
= n[1 —cos(2~oi)]g; . .

(13)

Because of this simple TBM form (containing no pa-
rameter such as the energy which would be known

to limited precision), the recursion relation (9) for the
decimation function e can be iterated up to 35 times,
thereby studying systems of the size 14 930 351. This
accuracy is particularly crucial in order to observe
higher order limit cycles. Our detailed numerical
study reveals various limit cycles at certain values
of n. Writing n = 1/abs[cos(2~r)], the limit cy-
cles are observed for the rational values of r. For
example, for r = 1, the period p of the limit cy-
cle is found to be 3, while p = 12 for the values
r = 1/3, 1/6, 1/8, 1/14, 1/18, 2/9. Furthermore, we ob-
serve p = 24 for r = 1/7, 1/12, 1/16, 3/14, 3/16, 3/23
and p = 18 for r = 1/17, 1/19, 3/17, 3/19. Since the
RG equations cannot be iterated more than 35 times
(because of memory limitations), we cannot see higher
order cycles. Based on this study, we conjecture that for
all rational values of r, the RG How converges on a limit
cycle of period which is a multiple of 3. However, the
correlation between r and p still remains a mystery.

For arbitrary values of n, the decimation functions do
not converge on a limit cycle. The plot of e„+~(0) vs
e„(0) is found to converge on an invariant set which
resembles an orchid liower (see Fig. 2). We conjecture
that the invariant set of the renormalization operator
is a universal strange attractor. The periodic orbits
corresponding to the rational values of r are expected to
be dense on the attractor. However, we conjecture that
the probability to hit a periodic orbit is still zero. The
confirmation of these ideas by an explicit solution of the
renormalization equations remains open.

It turns out that the results at the strong coupling limit
of the generalized Harper equation shed some light on the
C phase of the model [12]. This is due to the fact that for
a fixed value of n, the period of a strong coupling limit
cycle coincides with the period of a similar limit cycle
at the critical line A = o. . Analogously, the existence of
a strange set in the strong coupling limit strengthens our
previous conjecture [4] on the existence of a similar set in
the C phase.

In summary, our decimation studies show the existence
of a new strong coupling renormalization fixed point
which controls the universal fluctuations of the localized
wave functions in the Harper equation. Unlike the trivial
fixed point of the weak coupling limit, the strong coupling
fixed point describes a new nontrivial universality class
for the Harper equation. In analogy with the critical
phase, these fluctuations are characterized by a universal
scaling ratio which is determined by the value of the
fixed point function at the origin. We are able to find
a power series expansion of the fixed point and examine
the stability of the fixed point under the renormalization.
It turns out that a change in the NN or NNN coupling is
an irrelevant perturbation as long as the NNN coupling
is below a certain threshold. Above the threshold, the
system is outside the basin of the attraction of the fixed
point and the renormalization Row is attracted by an
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FIG. 2. A two-dimensional projection of the attractor of the
renormalization How in the strong coupling limit A ~ GG. For
about 4000 different values of n ~ 1, decimation equations
were iterated 35 times and the first 10 iterates were ignored as
transients.

invariant strange set of the function space. Our studies put
the localized and the critical phase on the same footing.
The localized phase could in fact be viewed as a fat
critical phase. We hope that Bethe-ansatz tools [13],
which were successfully applied to Harper critical point,
will shed further light on the results described here.

The concept that the fluctuations in the random disor-
der problem may be fractal has been investigated recently
[14—16]. The major problem in various numerical stud-
ies is that due to limited precision, it is not clear whether
the studies really describe the properties of an infinite sys-
tem. Our decimation equations, which take into account
the internal frequency of the quasiperiodic system, are not
suitable in the present form for studying models with ran-
dom disorder. However, we investigated Eq. (1) where
the cosine term was replaced by the unbounded potential
tan(27ro. i), which has been shown to have the localiza-
tion character of the Lloyd model describing a particle in
a random potential [18]. Our renormalization study of this
model (where the states are localized for all values of A)
showed that the fluctuations in the localized wave func-
tions were self-similar and were described by the strong
coupling Axed point of the model. These results put our
study in a more general perspective and strengthen the
likelihood of fractal characteristics in random or aperi-
odic systems exhibiting localization. Since localization is
generic in a variety of systems [17] including the models
of quantum chaos [18], the results described here open a
new avenue in the localization theory.
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