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Two Phase Transitions in the Fully Frustrated LY Model
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The fully frustrated XY model on a square lattice is studied by means of Monte Carlo simulations.
A Kosterlitz-Thouless transition is found at TKT = 0.446, followed by an ordinary Ising transition at a
slightly higher temperature, T, = 0.452. The non-Ising exponents reported by others are explained as
a failure of finite-size scaling due to the screening length associated with the nearby Kosterlitz-Thouless
transition.

PACS numbers: 75.10.Hk, 64.60.Cn, 75.40.Mg

The critical behavior of two-dimensional fully frus-
trated XY (FFXY) models has been the subject of much
interest during the last decade. This is seen in the large
number of papers in the literature, of which a number are
very recent. In spite of this, the controversy of the nature
of the phase transition(s) in these models is by no means
settled.

The models under discussion include the antiferromag-
netic XY model on a triangular lattice [1,2], the square-
lattice version of the XY model with one antiferromag-
netic coupling per plaquette [3,4], and the corresponding
Coulomb gas with half-integer charges [5,6]. Also dis-
cussed in this context are the coupled XY Ising system [7]
and the 19-vertex version of the fully frustrated XY' model
[8], which are believed to be in the same universality class.
In the present Letter we focus on the square-lattice version
of the FFXY model, but since the results are expected to
have a more general validity, we will repeatedly refer to
studies of the other above-mentioned models.

Besides the theoretical questions regarding the univer-
sality class, the study of the fully frustrated models is
largely motivated by their relevance for Josephson junc-
tion arrays in a magnetic field. Because of this relation,
the Hamiltonian of the FFXY model on a square lattice is
customarily written with the vector potential A;j,

0 = —1P cos(0; —
OJ + A;i) .

(lj)
Here i and j enumerate the lattice sites, 0; is an angle as-
sociated with site i, and the sum is over nearest neighbors.
The frustration is determined by the A;j. Full frustration
corresponds to one-half Aux quantum per plaquette, which
means that f =—(I/2~) gA;~ = 1/2, where the sum is
taken around a plaquette; cf. Eq. (3) below.

The ground state for this model on a square lattice [3]has
plaquettes with clockwise and counterclockwise rotation in
a checkerboard pattern. The angular difference between
nearest neighbors is @;~ = 0; —

0& + A;i = ~7r/4.
This checkerboard pattern gives rise to the discrete Z2
symmetry of the antiferromagnetic Ising model, beside
the rotational XV symmetry. At low temperatures this
model therefore has both the topological long-range order
of the XY model, and the ordinary long-range order of

the antiferromagnetic Ising model. As the temperature
is increased, both the XY-like and Ising-like orders are
expected to vanish.

In the first Monte Carlo (MC) study of this model,
Teitel and Jayaprakash [4] found a steep drop in the helic-
ity modulus, signaling the loss of XF order, accompanied
by an increase in the specific heat with lattice size, consis-
tent with an Ising transition. Being unable to determine
the precise critical behavior of the FFXY model, the au-
thors put forward two possible scenarios.

(i) As the Ising temperature, T„is approached from
below, the Ising excitations produce a steep drop in
the helicity modulus. As this quantity approaches the
universal value, the Kosterlitz-Thouless (KT) excitations
become important producing a universal jump. This
occurs before the loss of Ising order, TKT ( T, .

(ii) As T, is approached from below, the Ising exci-
tations give rise to a jump larger than the universal value
[9]. The loss of Ising and XY order take place at the same
temperature, TKT = T, .

Since then, several investigations have been made with
the aim to decide between these two possibilities. Whereas
some of the earliest MC studies were not decisive [1,2], a
large number of recent papers [6—8, 10—14] on FFXY mod-
els have yielded exponents for the Z2 transition that differ
from the pure Ising ones, suggesting a new universality
class, the second possibility above. The evidence is, how-
ever, not conclusive, since the finite-size scalings in these
papers are not quite satisfactory.

In this Letter we present some MC analyses that shed
new light on the behavior of the FFXY models. We first
give evidence for an ordinary KT transition. We then
demonstrate that the presence of the screening length as-
sociated with this transition in the region immediately
above TKT precludes the use of ordinary finite-size scal-
ing, and argue that this is the reason for the reported
non-Ising exponents. We then determine the Z2 corre-
lation length, present evidence for an Ising temperature
T, ) TKT, and demonstrate that our data are, indeed, con-
sistent with the pure Ising exponent, v = 1. Our MC
data were obtained on a bunch of workstations, by means
of the ordinary Metropolis algorithm. The results in the
present Letter are in agreement with the suggestion made
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in Ref. [1] on the basis of less conclusive analyses of MC
data from a triangular lattice.

The precise determination of the temperature for a
Kosterlitz-Thouless transition is a difficult task. This is
due to both the absence of spectacular peaks and a logarith-
mic correction that gives problems with ordinary finite-size
scaling. A way to cope with these difficulties, by extract-
ing the finite-size dependence from the Kosterlitz' renor-
malization group equations, was suggested some years ago
[15]. The result may be expressed as a finite-size scaling
relation for the helicity modulus [16]valid right at the tran-
sition temperature TKT,

Yl 77 =1+ 1

2TKr 2(lnL + lo)

Here L is the system size, Yi. is the helicity modulus
for that size, and lo is a parameter to be determined.
The successful application of this relation does, however,
require some care. In the XY model the amplitude of
the spin waves change with both temperature and lattice
size, which makes it necessary to identify the temperature
scale of relevance for the vortices, the Coulomb gas
(CG) temperature, Tc [17,18]. In the Coulomb gas
this is no problem, but to obtain the equivalent of the
helicity modulus one has to include another term in the
Hamiltonian containing the polarization squared [19,20].
The data obtained in this way do, indeed, fit very well by
Eq. (1) [21].

Figure 1 shows the result from this kind of fit for the
FFXY model. Note that the scaling relation is obeyed only
for rather large lattices, L ~ 32. This is not surprising
since Eq. (1) is expected to be valid only for low renormal-
ized vortex density. A KT transition at a low Coulomb gas
temperature [6],as in the model under consideration, has to
be monitored at larger lengths in order to get data from the
region sufficiently close to the critical point. The fit gives

TK~ = 0.12847(4) corresponding to TKI/J = 0.4460(1).
We note that this is clearly below T/J = 0.454, which
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FIG. 1. Y~/2T versus lattice size at TKr = 0.12847 to-
gether with the finite-size scaling function, Eq. (1). The good
fit is strong evidence for an ordinary KT transition.

is a typical value of the Z2 transition temperature in the
literature [11—13].

For the study of the Z2 transition it is customary to
define the staggered magnetization

(2)

where the sum is over all the plaquettes of the system,
and m is the vorticity. We define the vorticity, in terms
of the rotation of the current sin@;, —= sin(0; —

0~ + A;~)
around a plaquette [1],

1
m = (sin@I2 + sin@&3 + sin/34 + sin@4/). (3)

8

The normalization factor in Eq. (3) is chosen from the
zero-temperature value of I, which follows from the
angular difference P = ~ vr/4 in the ground state.

Several recent MC analyses of the Z2 transition in the
FFXY models make use of the expected finite-size de-
pendence of various quantities at criticality [6—8, 10—13].
Such methods have generally yielded non-Ising exponents,
suggesting a single transition in a new universality class.
One of several different approaches is to make use of prop-
erties of the distribution function of M at criticality. This
has been done both directly in the FFXI' model [13] and
in the corresponding Coulomb gas [6].

The tacit assumption behind these scaling analyses is,
however, that the system size is the only relevant length
at criticality. The presence of a nearby transition with a
corresponding characteristic length, A, may well invalidate
this assumption. This therefore calls in question the
attempts to determine the critical exponents of the Z2
transition in the FFXY models by finite-size scaling at T, .
The condition for a successful application of finite-size
scaling would be L » A, which may imply prohibitively
large lattices.

The effect of this additional length is clearly seen in
the dependence of M on the boundary conditions (BC).
Beside the ordinary periodic BC (PBC) we make use of
fiuctuating BC (FBC) [22] obtained by introducing phase
mismatches across the boundaries in the x and y directions
as a pair of additional dynamical variables. It is with these
BC that the XY model corresponds to the CG with periodic
BC [5,20,22]. Results for the magnetization obtained with
these two BC, and L = 16, 64, are shown in Fig. 2. As
the figure shows, there is a size-dependent temperature
region where M is sensitive to the BC. A comparison
with the helicity modulus (dashed lines) shows that the
difference between the two curves vanishes when Yz = 0.
This condition implies L » A since the vanishing of Y
means that vortex pairs at distance =L are free.

The dependence of M on the BC is presumably a
reAection of the dependence of the vortex interaction
on the BC [20], an effect that vanishes if Y = 0. The
conclusion from this figure is therefore that the value of
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for a good fit to Eq. (6). This means that we are only
able to obtain reliable values for $ at temperatures down
to T/J = 0.472. As an additional complication, we also
have to consider effects from the temperature dependence
of the spin waves.

The effect of the spin waves on the behavior of the
FFXY model seems to be overlooked so far. In the
analysis of the Z2 transition, the importance of the spin
waves stems from the fact that the energy associated with
a domain wall becomes smaller with larger spin wave
amplitude. There are two possible contributions to the
temperature dependence: The average value of ~m~ for a
single plaquette changes with temperature, and the bare
vortex interaction may be affected by the spin waves.

To appreciate the significance of this effect one may
well compare with an Ising model, HI = —Kg~;J) s;sJ,
with nonsingular temperature dependences in both the
coupling constant and the magnitude of the spins. In the
immediate vicinity of T, these temperature dependences
may be neglected with impunity, but with data in a
larger temperature region, one has to resort to an effective
temperature variable, T = T/Ks . To apply this kind
of reasoning to the FFXY model we suggest making use
of the expression for the bare vortex interaction from
Ref. [20]. With m defined as in Eq. (3), the energy
associated with the vorticity at the origin and r becomes

8JEb„,(r) = mpG(r)m, ,
Jp

This suggests that the relevantwhere Jp = J(cos@).
temperature scale is

TI
I& J/Jp

'

Figure 5 shows I/s plotted against TI. This is a
demonstration that the temperature dependence of sz is,
indeed, consistent with the pure Ising exponent, v = 1.
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I.IG. 5. The dependence of the Zq correlation length on the
effective temperature. With g '~' ~ T —T, , the data are
consistent with the pure Ising exponent v = 1.

The analysis also suggests a value of the Ising tern-
perature. The figure gives T,'/J = 0.4576(13), slightly
above TK~/J = 0.440. In ordinary temperatures this cor-
responds to T, /J = 0.452(1), which is consistent both
with TK~ as a lower bound and the crossing points in
Fig. 3 as upper bounds for T, .

In conclusion, we have found ample evidence for two
distinct transitions in the FFXY model on a square lattice.
The KT transition is analyzed by finite-size scaling of
the helicity modulus, the previously obtained non-Ising
exponents are explained as a failure of the scaling
assumption, and, with the identification of the relevant
temperature scale, the data are consistent with the Ising
exponent, v = 1.
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