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Atomic Size Effects in Pressure-Induced Amorphization of a Binary Covalent Lattice
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Applying a bond-order potential model to describe a binary covalent solid (SiC) in a molecular
dynamics simulation, we show that under hydrostatic compression the homogeneous lattice undergoes
an amorphous transition triggered by an elastic shear instability, with the critical pressure agreeing well
with that determined from finite-load stability criteria. By modifying the potential model to suppress
either atomic size difference or mixed bond preference, we demonstrate that the former effect can be
dominant in favoring arnorphization over polymorphic transition.

PACS numbers: 61.50.Ks, 62.20.Dc, 62.50.+p

When a crystal lattice becomes structurally unstable
under pressure, two types of responses generally can
be expected, a polymorphic transformation to another
structure or a transition to a disordered state, the latter
being a particular case of the phenomenon of solid-state
amorphization. From the standpoint of phase stability of
stressed solids, it is clearly of fundamental interest to be
able to predict, for a given solid, the critical pressure at
which the instability occurs, and understand what factors
govern the "deformation" path the system will follow.

Conventional theoretical analysis of the polymorphic
transition between two structures tends to involve a de-
termination of the cohesive energy curves from which the
critical pressure is obtained by a common tangent con-
struction [1]. However, such an approach generally does
not take into account the possible existence of an acti-
vation barrier separating the two structural phases. Re-
cently, it has been shown that for homogeneous lattices,
elastic stability criteria, expressed in terms of current-state
elastic constants and the applied stress, provide a practi-
cal means of determining not only the critical condition
of stress or strain, but also the nature of the triggering in-

stability [2]. Thus, one has an alternative approach, one
based on mechanical response, to the analysis of stability
of solids at finite loading.

In this Letter we report a study of the crystal-to-
amorphous transition in a homogeneous binary covalent
lattice using a model interatomic potential developed to
describe P-SiC. We show that the critical pressure at
which the transition is observed in a molecular dynamics
simulation is that predicted by the aforementioned stability
criteria, and that the instability is caused by the vanishing
of the shear modulus, itself a consequence of internal
strain relaxation. Moreover, we compare the stability
analysis of the binary lattice using the model of SiC with
that of an elemental lattice using a similar model for
Si, the latter having been shown recently to undergo a
polymorphic transition under pressure (diamond cubic to
P-Sn). We demonstrate that disordering of the binary
lattice arises from the effects of atomic size difference,
which are obviously absent in an elemental lattice. These

results, made possible by manipulating the potential model
describing SiC [3] to suppress either size effect or chemi-
cal bond preference, point to a subtle competition between
two shear instabilities, the vanishing of the rhombohedral
shear modulus leading to arnorphization in the SiC model,
on the one hand, and the vanishing of the tetragonal shear
modulus leading to polymorphic transition in the Si model
on the other hand. With regard to possible experimental
correspondence, our findings appear to correspond to the
recent observation of pressure-induced amorphization of
a similar binary covalent compound, BAs [4]. While
measurements on P-SiC which show amorphization under
electron irradiation [5] and polymorphic transition under
pressure [6] have been reported, as we discuss below, it
would not be appropriate to attempt a direct comparison
of the present results with data.

The empirical interatomic potential we have adopted
to simulate a binary covalent solid is a modification of
that developed by Tersoff [3] to model P-SiC. This is a
many-body potential in which the local tetrahedral envi-
ronment is treated through a bond order parameter b;~.
For the interaction between atoms i and j, b;~ also de-
pends on other neighboring atoms; as a result the inter-
action of a Si with its C neighbor is not the same as
that of a C with its Si neighbor. Our modification con-
sists of scaling the interaction range cutoff with the lat-
tice parameter [7] which among other benefits has the ef-
fect of avoiding the strong unphysical repulsion between
second nearest neighbors which otherwise would occur
suddenly under high compression. The resulting cohe-
sive energy curve is found to be in excellent agreement
with ab initio results throughout the entire range of com-
pression in this study, as well as a considerable range of
volume change in tension. A molecular dynamics sim-
ulation is carried out in a cell of 216 atoms, arranged
in the zinc-blende structure at an initial lattice parameter
ao = 4.326 A, with periodic boundary conditions. Hy-
drostatic pressure is applied via the method of Parrinello
and Rahman [8] which allows the simulation cell to re-
spond by volume and shape changes. The equations of
motion are integrated by means of a predictor-corrector
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algorithm with a time step size of 4.8 X 10 ps. At
each applied loading, the system is allowed to reach equi-
librium in 60000 time steps, after which another 60000
steps are taken to collect trajectory data for property cal-
culations. The simulation begins at zero pressure; at each
incremental load increase, the atomic configuration ob-
tained at the end of the preceding load is used as an initial
configuration for the succeeding load. All runs are made
at a temperature of 300 K, maintained by velocity rescal-
ing at every time step.

The overall system response to pressure loading is
shown in Fig. 1. As compression proceeds one sees
initially normal behavior of volume decrease and potential
energy increase, along with a near constant static structure
factor s(k), evaluated for k = (2'/a) (1, 1, 1). This
behavior continues until an abrupt change occurs at P =
707 GPa. Referring to the system states just before and
after the change as A and B, respectively, we find that
in going from A to B by a small increment in the
applied pressure, s(k) drops sharply to an essentially
zero value. Correspondingly, the system volume shows
a slight increase [note the enlarged scale in Fig. 1(c)],
while the potential energy decreases. Direct inspection of
the instantaneous atomic configurations at these two states
confirms that the lattice has gone from a perfectly ordered
state at A to a fully disordered state at B. We therefore
interpret the observed process as a crystal-to-amorphous
transition induced by compression.

Figure 2 shows that the temporal variations of s(k), V,
and E~ indeed occur in concert and extend over a period
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FIG. 1. System responses to compression (a) static structure
factor, (b) simulation cell volume (in units of 6.538 A'),
(c) same as (b) but on an expanded scale, and (d) internal
energy per atom (in units of eV). P is time-averaged internal
pressure.
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FIG. 2. Time-dependent responses at state B (a) s(ki,
(b) volume, (c) energy per atom, and (d) off-diagonal elements
of the cell matrix h (in units of 1.87 A).

of about 0.5 ps. While it is not surprising that both system
volume and energy should show changes that reAect the
loss of structural order, the fact that under such high
pressure the system volume would increase and energy
decrease may seem unusual. We have determined that,
as a result of the structural rearrangement, the repulsive
part of the energy decreased more than the increase in the
attractive part, thus energy decreased as a whole. Here we
note that in a previous molecular dynamics simulation of
pressure-induced amorphization in n-quartz [9] an energy
decrease also occurred at the transition. From the present
results on the radial distribution functions, which clearly
indicated that only short-range ordering remains at state B,
we find that the collapse of the ordered lattice has allowed
the Si-Si and C-C second nearest neighbors to move closer
toward each other. Although every atom is still fourfold
coordinated, the distributions of the tetrahedral angles and
the cohesive energies of an atom have greatly changed.
The angular distribution, previously sharply peaked about
the characteristic 109.47', becomes a practically uniform
distribution over a range approximately from 70' to 130 .
For the cohesive energy distribution per atom, both C
and Si show a decrease in peak and average values,
the changes being relatively more significant for C. It is
conceivable that the detailed behavior of the energy and
volume change upon amorphization can depend on quite
subtle features of the potential model.

In Fig. 2 we show also the behavior of the off-diagonal
components of the matrix h formed by the basis vectors
of the simulation cell. In the Parrinello-Rahman method
all nine components of h are allowed to vary during the
simulation. When the off-diagonal elements become
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nonzero, it means that the atomic configuration is under-
going a shear deformation. Thus Fig. 2(d) constitutes
evidence that the abrupt system response is associated
with a shear instability.

In view of the simulation results one may ask whether
the observed critical pressure can be predicted by an ap-
propriate stability analysis. For this purpose it is neces-
sary to apply stability criteria [2] which take into account
the effects of an applied load. In the present case, the
criteria are E(P) =- (Cit + 2Ciq + P)/3 ) 0, G'(P) =
(Cit —Ctq)/2 —P ) 0, G(P) = C44 —P ) 0, where
&(P), G'(P), and G(P) may be regarded as the pressure-
dependent bulk modulus, tetragonal and rhombohedral
shear moduli, respectively, and C;~ are the isothermal
elastic constants at the current state of stress [10]. We
have calculated these moduli over the range of hydro-
static loadings where the zinc-blende lattice is predicted
to be unstable. Figure 3(a) shows that as the lattice is
compressed all moduli increase initially; however, un-
der high compression G(P) begins to decrease sharply,
vanishes at r/vn = 0.734, corresponding to a pressure
of 1156 GPa. At 300 K, G(P) is found to vanish at
r/ro = 0.775 corresponding to a pressure of 714 GPa, a
prediction which is in satisfactory agreement with the cri-
ical pressure of 707 GPa directly observed in the simu-
lation described above. Inspection of the individual
components of C44 shows that the decrease of G(P) arises
from the abrupt enhancement of fIuctuations in the shear
stresses. Since this is a negative contribution, the acceler-
ated change is responsible for the reversal in the pressure
variation of G(P), previously dominated by the monoton-
ically increasing contribution to C44 from the Born term
[10]. Physically, the effect causing the decrease in G(P)
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ro denote lattice parameters at current and zero pressure,
respectively. Small circles denote the triggering instability for
hydrostatic compression and tension.
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can be attributed to internal strain relaxations [11]brought
about by the increased pressure.

At this point it is useful to recall similar stability analy-
sis results which have been obtained using the Tersoff po-
tential with parameters determined for elemental Si [12].
As shown in Fig. 3(b), for Si in the diamond structure
both G(P) and G'(P) decrease under sufficient compres-
sion, with G'(P) vanishing first at r/ro = 0.86 and a cor-
responding pressure of 111 GPa. Since this tetragonal
shear instability results in a transition from diamond cubic
to P-Sn structure [12],one may ask, in view of Figs. 3(a)
and 3(b), what is the origin of the different structural re-
sponse to compression between the binary and elemental
lattices. To address this question we consider the two fun-
damental effects associated with the binary nature of the
SiC model, a difference in the atomic sizes of C and Si,
and the chemical preference of Si (C) to have the other
species as its nearest neighbors. Recently Tersoff has
shown that size effect plays a much more dominant role
in chemical ordering when the system is in its crystalline
state than when it is in an amorphous state [13].

To separate the effects of size disparity from that of
mixed bond preference, we note that the Tersoff poten-
tial is of the form VJ = f, (ri) [A;,.e '~ '( —8;,yb;ij X
e & i "i, where the two effects are described through
the bond order parameter b;~ and the factor ~, respec-
tively. (For definitions of the various quantities in this
potential, readers should see Ref. [3].) Since
when i and j refer to atoms of the same species, its
value affects only V, , and V.. . . and therefore the
heat of formation AH On the other .hand, to suppress
the effect of atomic size difference, one can simply
set b, ~

= b, ~
in functional form. This observation

leads us to examine two idealizations of the Tersoff
potential, one in which mixed bond preference is sup-
pressed through adjusting ~ to give AH = 0 (model I),
and another in which size difference is suppressed by
the method just described while at the same time ad-
justing g so that AH remains unchanged (model II).
By deriving an effective pair interaction from the
many-body Tersoff potential one can see the physical
meaning of model II, namely, it is the limiting case of
the bond order potential when both species have the
same atomic size. In Table I the elastic constants, lat-
tice parameter, and cohesive energy calculated for the
two idealized models at equilibrium configuration and
0 K are compared with values for the full model. It
is clearly seen that while the elimination of chemical
bond preference has little effect, all three elastic con-
stants are significantly altered in the absence of atomic
size difference. Although both C]] —C~2 and C44 are
appreciably reduced, the lowering of the former is more
drastic such that in model II the elastic instability is
found to be the vanishing of 6. This result is consis-
tent with the behavior obtained in the case of an ele-
mental covalent lattice [12]. Thus we have shown that
the difference between binary and elemental lattices
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TABLE I. Comparison of properties calculated using the
Tersoff potential and the two idealizations, models I and II.

Lattice parameter (A)
Cohesive energy (eV)
Bulk modulus (Mbar)
C~ ~

(Mbar)
C

Cl 1 +12

Tersoff

4.32
—6.19

2.25
4.36
1.20
2.56
3.16

Model I

4.34
—6.03

2. 18
4. 19
1.17
2.42
3.02

Model II

4.32
—6.19

2.25
3.31
1.72
1.61
1.59

in compression-induced structural response lies in the
dominant role of atomic size effect. In other words,
amorphization occurs in the SiC model because the onset
of vanishing of G precludes a polymorphic transition as-
sociated with the instability of G' = 0. To demonstrate
that this is the correct interpretation, we have carried out a
simulation of model II under compression and indeed ob-
served a transition from zinc blende to rock salt structure
which is triggered by the tetragonal shear instability.

Experimentally, P-SiC has been observed to amorphize
under electron irradiation [5], whereas under compression
it transforms from zinc blende to rock salt structure
at 100 GPa [6], a transition which was predicted at
60 GPa by first-principles calculation of cohesive energy
[14]. A comparison of the present results, obtained for
the homogeneous lattice, with measurements on samples
which are not perfect crystals can be misleading unless
the effects of inhomogeneities such as grain boundaries
and other crystal defects can be assessed. We are also
mindful that the validity of our results is restricted to that
of the Tersoff potential model, the accuracy of which
can be tested, so far as electronic structure effects are
concerned, by simulations using the ab initio method
or the tight-binding approximation. For example, the
volume and energy changes upon amorphization discussed
previously could be verified by these more rigorous
methods. Even here it is good to note that a recent
observation of amorphization of a similar covalent AB
compound (BAs) at 125 GPa [4] was interpreted as a
kinetically frustrated process; in this case first-principles
calculation had predicted a polymorphic transition at
about 110 GPa.

The present work is the first direct simulation of
pressure-induced amorphization in which the unstable
structural responses are unambiguously interpreted in
terms of a specific elastic instability. While the phe-
nomenon has been observed in a previous simulation of
a-SiOz [9], the results were not analyzed in identifying
the amorphization mechanism as a shear instability [15].
Since solid-state amorphization can be brought about by
physically very different driving forces, ion and electron
irradiations, chemical diffusion, and mechanical defor-
mation [16], it has been conjectured whether hydrostatic
pressure alone in a homogeneous lattice is sufficient to
cause amorphization [17]. Present results and those on

n-Si02 [9] give an affirmative answer for the case of bi-
nary lattices. In particular, we have emphasized here the
essential role of atomic size disparity for amorphization.

Our study also gives validity to the suggestion [17]
that solid-state amorphization and melting are analogous
phenomena in which one can distinguish heterogeneous
and homogeneous processes of thermodynamic and me-
chanical nature, respectively. It has been shown that, in
isobaric (P = 0) heating of a homogeneous lattice, the
system can be superheated to a temperature where a tetrag-
onal shear instability triggers a sequence of shear and di-
latational deformation, resulting in a disordered state with
all the signatures of a first-order transition [2]. In analogy
to this thermoelastic process which one may call mechani-
cal melting, the pressure-induced process studied here may
be regarded as mechanical amorphization. Both are upper
limits of metastability, homogeneous in nature, driven by
an elastic instability, and observable only because the het-
erogeneous process has been suppressed.
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