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Step-Bunching Instability of Vicinal Surfaces under Stress
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On a vicinal surface under stress, elastic relaxation at steps produces a long-range attractive
interaction between the steps. As a result, the surface is unstable against step bunching, driven by
the energetics of the system rather than by the kinetics of step How. This bunching instability differs
from the predictions of previous continuum models by its lack of a characteristic wavelength. Instead,
it evolves by progressive coalescence of step bunches. Flux can dramatically modify this evolution,

limiting the growth of step bunches.

PACS numbers: 68.35.Fx, 68.35.Bs

For several years it has been recognized that the
surface of a solid under stress exhibits a morphological
instability, characterized by spontaneous roughening [1—
5]. Such roughening is important for semiconductor
technology, given the growing role of strained layers
in electronic devices. Yet the understanding of stress-
induced roughening is still incomplete. Early work [1—
3] focused on continuum models and predicted a true
instability. More recently it has been noted that stress-
induced roughening of an initially fiat surface requires
nucleation of steps or facets [5,6], so that a flat surface
may be metastable rather than unstable.

In practice most semiconductor devices are fabricated
on vicinal substrates, i.e., substrates with an orientation
that is a few tenths of a degree off the crystallographic
plane. This misorientation creates a substantial density of
steps, which are intended to facilitate smooth growth by
step flow. Nevertheless, steps are sometimes observed to
form bunches, giving a rougher surface. Such bunching
is usually attributed to the kinetics of step liow [7—12].
There have been suggestions that attractive interactions
between steps could also lead to step bunching [13,14].
However, the proposed interactions are rather short ranged,
and even their existence remains speculative.

Here we show that on vicinal strained layers, there is
quite generally a long-ranged attraction between steps,
which leads to a robust step-bunching instability with
several novel features, even under ideal conditions of step-
Ilow growth. In contrast to continuum models [1—4], this
instability has no characteristic wavelength, but proceeds
by progressive coalescence of step bunches. However,
if the surface is exposed to a Aux of atoms, coalescence
terminates at a maximum bunch size that depends on the
flux. Step bunching on strained layers has already been
observed by several groups [15—18], and we believe these
observations represent precisely the effect discussed here.

Recently Duport, Nozieres, and Villain [10] also pro-
posed a step-bunching instability. However, that instabil-

ity is purely kinetic, caused by the presence of a kinetic
barrier to diffusion at steps [12]. Stress enters only in

determining the magnitude of the diffusion barrier. Thus
there would be no instability in the limit of high temper-
ature, where such a barrier becomes unimportant. More-
over, that instability occurs only for certain values of the
material parameters. In contrast, the instability discussed
here is present for any strained layer, even for zero flux or
high temperature.

We begin by analyzing the interaction between steps
and deriving their equation of motion. Steps move
discretely by the incorporation or detachment of atoms
at kinks. However, if steps are not pinned, and their
meandering is not too large, we need only consider the
average position of each step. The problem then becomes
one dimensional, and the step position is a continuous
variable.

The principal interactions between steps (aside from
contact interactions) are elastic in nature. For simplicity,
we assume that the system has only one type of step
and that all terraces are equivalent. Without strain, the
only elastic interaction is the repulsion arising from the
intrinsic stress (the "force dipole" ) of the steps [19],which

has the form -„n2I. for steps at distance L. There is
also a logarithmic repulsion when successive terraces are
inequivalent [20].

However, there is an additional effect at the surface
of a solid under stress, e.g. , a strained layer. At each
step, there is a discontinuity in the sorface height. Thus
the lateral force from the strained material on one side is
not balanced by an equal force from the other side. The
result is a net force at the step, i.e., a "force monopole. "
The magnitude of this force is simply the discontinuity in
the stress, i.e., the bulk stress o times the step height h.
There is an equal and opposite force distributed over the
terraces, but this has no effect on the step motion.

It is well known [20] that such force monopoles
lead to logarithmic interactions between steps. This
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interaction has very recently been directly observed in
atomistic simulations [21]. The novel feature here is that
successive steps have forces in the same direction, so
the interaction is attractive, of the form n~ln(L). Here
n~ = o. h /M, M being an elastic constant. Taking
the derivative of step energy with respect to position,
including both terms discussed above, the total force per
unit length on the mth step, f, is

CYt

(x„ —x )

A'2

(x„ —x )' ) '

where F~ is the formation energy of an adatom (i.e., the
energy to dissociate an adatom from a kink in a step) in
the absence of any force, and A is the area per surface site.

We solve the diffusion equation with an adatom Aux F
per site,

=DV'g+F,
Bt

where t is time and D is the adatom diffusion coefficient,
subject to the boundary conditions of Eq. (2). Evaluating
the divergence of the adatom current at the step gives the
velocity v of the mth step:
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B is extremely sensitive to temperature, so we expect that
stress-driven step bunching should be a strong effect at
high temperature, but negligible at low temperature. The
data needed to quantify B do not exist, to our knowledge.

We address two distinct issues here: an initial bunching
instability and the subsequent evolution of the surface
morphology. The existence of a bunching instability can
be determined by perturbing the steps from their initially
equispaced positions and calculating the linear response.

where x is the position of the mth step in the direction
perpendicular to the steps. Equation (1) represents the
force conjugate to the step position, i.e., the force driving
step motion, and should not be confused with the "force
monopole" [20] discussed above, which is conjugate to
elastic distortion of the surface.

To derive the resulting step motion, we assume that
the adatom densities on both sides of the step are in
equilibrium with the step. (This neglects for simplicity
the possibility [12] of a rate limiting diffusion barrier at
the step, which can either drive step bunching or oppose
it.) The adatom density rt per unit site at the mth step is
then

—(E, +f„,A)/~T

Let u (t) denote the deviation of the step from the
position it would have under ideal step How, i.e.,

u (t) = x (t) —L„(m + Ft),

where L„ is the average step separation. For a pertur-
bation of amplitude 5 and period N steps, we substitute
u,„(t = 0) = b, cos(2vrm/N) into Eq. (4) and integrate
the velocity. The result, for small times and to first or-
der in b, is

t 27r 27r
u (t) = e"'icos~ m + Ft ~,kN N ) (7)

where
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and Lo = Q(n2/n~) is the minimum-energy separation
for an isolated step pair. Separately, we have verified
by direct numerical integration that Eq. (7) gives a good
description of the short-time evolution.

For a given period N of the sinusoidal perturbation,
Eq. (8) describes a step-bunching instability if r ) 0.
Note that the existence of an instability, and the rate r
of initial bunching, is entirely independent of the Aux.
However, from Eq. (8), it is clear that the instability
depends sensitively on Lo/L„. This dependence is
shown in detail in Fig. 1. For widely spaced steps, where
the short-ranged repulsion is unimportant, the bunching
instability exists for all wavelengths, i.e., r ~ 0 for all
N. Moreover, the rate of bunching increases rapidly with
decreasing wavelength.

For more closely spaced steps, the most unstable wave-
length moves to a larger value, and the corresponding
bunching rate r decreases dramatically. (Note the dif-
ferent vertical scales in Fig. 1.) No matter how densely
spaced the steps, there is, in principle, a bunching instabil-
ity. However, because of the long wavelength and very
slow rate, the instability may become kinetically irrele-
vant for L„«Lo.

We now address the subsequent evolution of the step
bunching in the physically interesting regime L„»
Lo. The evolution of the surface morphology in the
most general case can only be obtained numerically by
direct integration of Eq. (4). In such calculations, we
typically use a system size containing 500 steps, with
periodic boundary conditions. A specific example is
shown in Fig. 2 for F = 0 (no deposition flux). The
initial configuration is chosen to have small random
deviations from uniform step spacing. Figure 2(a) shows
that, initially, small step bunches are formed, and these
coalesce into progressively larger bunches over time,
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FIG. 1. Rate r of initial step bunching after a sinusoidal
perturbation of period N steps is created, vs N. The solid lines
and dots are results of Eq. (8) and of numerical integration,
respectively. Values of the dimensionless step spacing L,, jLo
are indicated. Note the very different vertical scales in the three
panels.

FIG. 2. Evolution of surface morphology without fiux. (a)
Surface morphology at simulation times (from bottom to top)
of 0, 0.1, 0.7, and 4.7 for B = 1 X 10, o. ]

= 1, n2 = 100, and
I,,„=52. Five steps are indicated, which over time coalesce
into one bunch. The length of the system shown is 150L().
(b) Characteristic bunch size (n) vs time. The slope of the
straight line, which is the linear least-square fit to the data, i»
0.25 ~ 0.01.

consistent with the faster bunching at shorter length scales
predicted in Fig. 1.

Figure 2(b) shows the evolution of the characteristic
bunch size (n) = (gz n&)/ gt nq, where nk is the number
of steps in the kth bunch. In calculating (n), two bunches
are considered separate if the terrace separating them
is larger than I.„. The bunches grow monotonically
with time. The result is consistent with a dependence
(n) ~ t'~, although we have not analyzed this behavior
in detail.

The long-time evolution in the presence of a Aux
raises complex issues of kinetics, quite aside from the
underlying instability, and so a complete discussion lies
outside the scope of this paper. Here we simply note the
most salient features, summarized in Fig. 3. As for I' =
0, the bunch size initially grows with time. However, the
slope in Fig. 3 implies a (n) ~ t'~ behavior, compared
with (n) ~ r'~ in Fig. 2. While the data in both cases
are over too narrow a range to take these exponents very

seriously, both power laws do appear in discussions of
surface morphology [22].

The important point to note in Fig. 3, though, is that
the bunching does not proceed indefinitely. The bunches
appear to reach a maximum size, at which they stop
growing. We have confirmed that this maximum bunch
size decreases with increasing flux. A detailed discussion
will be presented elsewhere, but the qualitative origin of
this behavior can be simply described. Consider large
bunches of many steps, separated by very large step-free
terraces. Most of the Aux then lands on the terrace, where
it diffuses to the first (lowest) and the last (uppermost)
steps of the bunches. If the flux is sufficiently large,
relative to the intrabunch diffusion and step binding,
the effect will be to eject the leading (lowest) step of
the bunch. This "debunching" mechanism was recently
addressed theoretically by Kandel and Weeks [23], who
showed that the essential properties are correctly captured
in a one-dimensional model such as ours.
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FIG. 3. Evolution of the bunch size (n) with time, for a Aux
F = 25. Other parameters are the same as for Fig. 2. The
slope of the straight line, which is the linear least-square fit to
the data before saturation, is 0.16 ~ 0.01.

Thus, while the energetics drive roughening of the
strained layer via step bunching, this bunching can be
substantially suppressed by a high growth rate (large Ilux),
or equivalently by low growth temperature. Not only
is the maximum bunch size reduced for large flux and
wide terraces, but each bunch will also eject many steps
before capturing any steps from the upstream bunch. We
therefore anticipate a steady state in which there are a
finite number of "free" steps between bunches at any
given moment [23], further reducing the total roughness.

This effect is potentially crucial for the growth of
electronic devices that contain strained layers as one
component. While we have shown that the tendency
to step bunching can never be entirely eliminated, the
presence of weakly bound bunches of only a few steps
is probably acceptable from a technological viewpoint.
Of course, whether the flux and temperature required to
suppress roughening are consistent with other processing
requirements depends upon the specific system.

In conclusion, for a vicinal surface under stress, the
elastic relaxation around each step causes a logarithmic
attraction between steps, leading to a step-bunching insta-
bility, regardless of the fiux or step density. However,
the ultimate surface morphology depends in a crucial way
upon Aux. It is likely that the step bunching observed in
strained layers [15—18] has as its foundation the mech-
anism we describe here. Careful experiments to explore
the relationship between bunch morphology and kinetic
parameters will allow quantification of the final essential
point made above: that surface morphology of a film un-
der stress can actually be kept smoother when the film is
grown far from equilibrium than it would be for a film
grown near equilibrium.

The work of Y. H. P. and M. G. L. was supported by
NSF Grant No. DMR 92-01856.

Note added. —After this paper was submitted, we
received a preprint that also addresses this problem,
though with a different emphasis [24].

~Present address: Oak Ridge National Laboratory, Oak
Ridge, TN 37831.
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