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Nonuniversal Dynamical Crossover in Pure and Binary Fluids near a Critical Point
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We compare the results of dynamical renormalization group theory with experiments in the

nonasymptotic region at second order phase transitions in liquids and mixtures.

Agreement is found

with a parameter free prediction of the full temperature dependence of transport coefficients and

first sound attenuation after fitting one transport coefficient (e.g., shear viscosity).

Differences in the

nonuniversal behavior between fluids and mixtures appear due to the flow of a dynamical parameter

neglected in the mixtures so far.
PACS numbers: 64.60.Ht, 05.70.Jk, 64.70.Fx, 64.70.Ja

Renormalization group theory (RGT) has shown that
the gas-liquid and liquid-liquid second order phase transi-
tions in pure fluids [1] and mixtures [1,2] belong to the
same universality class. The proof of universality and
the calculation of universal values of exponents and am-
plitude ratios is considered as one of the main tasks in
the field of second order phase transitions [3]. However,
the experimentally accessible region is in most cases out-
side the asymptotic region where strict universality holds.
Therefore it is necessary to take into account nonuniver-
sal effects. So far such effects within RGT have only
been taken into account by linear correction terms with
transient exponents. A description analogous to the one
at the superfluid transition in *He and *He-*He mixtures
([4,5]; for a review see [6]) is demanded. Here we com-
pare the recent theoretical results of such a nonasymptotic
theory [7], which describes the full temperature depen-
dence of the transport properties in the critical region,
with experiment. Asymptotically RGT relates different
time scales via the universal values of amplitude ratios.
This also holds in the nonasymptotic regime, where the
universal ratios are replaced by temperature dependent
functions, which allow us to relate various physical quan-
tities. Thereby we follow the strategy developed for the
superfluid phase transition [6], but which is applicable
quite generally.

In a pure fluid at its critical point only one time
scale exists for the diverging transport coefficients
(TCs), thermal conductivity « and shear viscosity 7).
This property manifests itself in the universality of
the value of the Kawasaki amplitude [8] (measured
relative to its mode-coupling value of 1/67) R&p =
67 Kexp () Nexp () E()/kgTpC,(r) in the asymptotic
region, related to the asymptotic scaling law (in d = 3)
x), + x, =1 — 5 [1,9], where x, and x,, are the critical
exponents of the thermal conductivity and shear viscosity,
respectively. 7 is the exponent, appearing in the static
order parameter correlation function, £ the correlation
length, and pC), the specific heat per volume. At7 = T,
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it is expected that Rg;;e reaches the universal value Rijeo,
[1,7,9,10]. We calculated within the model H [1] describ-
ing the critical dynamics of the pure fluid phase transition
(as limiting values of the corresponding expressions for
the plait point [7]) the thermal conductivity

Kineor (1) = € 2(D)pCp(T (1) <1 - %) (1)
and the shear viscosity
ksT . 1= f2(1)/36
4m L@@ f2) °
using the field theoretical version of RGT in one loop order

withn = 0. The dynamic parameters f(z) and I"¥)(¢) are
found from their flow equations (in one loop order)

‘_ii=_l(_£ 2) ar @ _
bae = 2/~ 17)

Ttheor (1) = £(1) 2

3 w2
2 e fs,
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where the flow parameter ¢ is related to the temperature
t = (T — T.)/T. by £ = &&7 (). The nonuniversality
enters the expressions via the initial conditions of the flow
equations. That means two background values I'(zy) and
f(#0) have to be taken from experiment. Inserting the theo-
retical results into the definition of the Kawasaki ampli-
tude one obtains its theoretical counterpart thu;; = 3[1 —
F2(0)/16][1 — f2(2)/36]/2f%(t). Fort = 0, f reaches its
fixed point value f*? = f—g and the Kawasaki amplitude
its universal value Rjcor = 1.056. This value for Rjcor
differs from the one loop value of Siggia, Halperin, and
Hohenberg [1] Rieor = 0.8 mainly due to a different
geometrical prefactor used in the field theoretical calcu-
lation (1/44 instead of 1/27r2), but differs also in the one
loop order terms [11]. Our value is near the value cal-
culated by Paladin and Peliti [10] R{jeor = 1.038 and the
mode-coupling value Riheor = 1 [8]. If we calculate the
vertex functions at d = 3 instead of performing an € ex-
pansion, we obtain Rj,eor = 1.063. So our asymptotic val-
ues are within the range of the experimental values found
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so far. The dynamical critical exponents take the values
xx = 0.95 and x,, = 0.05.

We now compare our results for the TCs with mea-
surements in several fluids. For that purpose we insert
the experimental static quantities in evaluating the theo-
retical expressions. The correlation length, in most cases
not directly measured, is found from the two-scale fac-
tor hypothesis and the hyperscaling law [12]. We note
that uncertainties of the representation of the static quan-
tities (values of amplitudes and exponent in power laws)
lead to uncertainties in the absolute values of the predicted
TCs [13].

Our results for *He are presented in Fig. 1. First we
fit the shear viscosity data [14] by Eq. (2) with the initial
conditions I'(z = 107!) and f(+ = 107!) as fit parame-
ters [see Fig. 1(a)]. Then we predict without any further
parameter the thermal conductivity by Eq. (1) and com-
pare with the thermal conductivity of [15] [see Fig. 1(b)].
As an additional test we also compared with the sound
attenuation data of [16] [see Fig. 1(c)]. The nonasymp-
totic expression as a function of frequency w and re-
duced temperature ¢ has been calculated in [17] a(f, w) =
[w2/2¢1(t, w)]D;(t, w) where ¢,(t, w) and D, (¢, w) are
determined by a complex function y(¢, @) via the relations
A, w) = R y(t,w)] and D (1, w) = —w 'I[y(t, w)].
The complex function is given by the expression

aq c*(£(t, @)
RTp 1+ [y2(€(t, 0)/21F+ (€1, @), @)~
€]
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FIG. 1. 3He: (a) Fit of the shear viscosity [14], without
correction for gravitational effects influencing the data for
t < 107%. Prediction (b) of the thermal conductivity [15]
and (c) of the normalized sound damping [16] at frequencies
0.5 MHz ((J), 1 MHz (O), 1.5 MHz (A), 3 MHz (<), and
5 MHz (V). The normalization «,(w) is the value of the sound
attenuation of the data point nearest to 7. for each frequency.

ag, v4(€), and c*(€) can be determined from static ex-
perimental quantities quite analogous to the A transition
in “He [18]. F+({,w) is related to the frequency de-
pendent specific heat, and the flow parameter € is identi-
fied by the relation |[£(£)"2/(&5 ' €)*F + 2iw/T@(£) x
(&6 '€)*12 = 1. The same quality of agreement has been
obtained with the corresponding data for *“He [13]. As
a second example for our comparison we chose ethane.
Again from a fit of the shear viscosity [19] we calculate
the thermal diffusivity, Dy = «/pC,, and compare with
the data of [20] (see Fig. 2). For a recent comparison
with experiment within mode-coupling theory see [21]. It
is interesting to note that the value of Rheor adopted in
their analysis agrees with our one loop value.

Let us now turn to binary mixtures. The critical behav-
ior at the consolute point belongs to the same universality
class as the gas-liquid phase transition in pure fluids. The
dynamical model, however, differs (model H' [1]) since
there is now an additional equation for the entropy density
besides the equation for the order parameter (concentra-
tion fluctuation). There are four TCs to be calculated: the
mass diffusion, the thermal conductivity, the thermal dif-
fusion ratio, and the shear viscosity. Universality means
that the respective asymptotic critical exponents and am-
plitude ratios take the same values as in the pure fluid
case [7].

In particular, for the mass diffusion we find

— & (d) — &
D) = £ 20000 (1= L) 5)
and for the shear viscosity
] kT, 1= 560/ = w0
Ntheor (1) = yr &(1) T@ (1) /2(0) . (©)

The dynamic parameter f(¢r) and the new one w(t) (see
[7] for details) are found from the flow equations
df 1 < 3 1 f? )
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FIG. 2. Ethane: (a) Fit of the shear viscosity [19].
diction of the thermal diffusivity [20].

(b) Pre-

2707



VOLUME 75, NUMBER 14

PHYSICAL REVIEW LETTERS

2 OCTOBER 1995

The parameter w has not been considered explicitly in
[1]; its fixed point value is w* = 0. However, it con-
tributes a subleading exponent w,, = %x,\ [7], which is
smaller than the exponents considered in the analysis of
[22], and it will turn out important in the nonasymp-
totic analysis as is shown below. The Kawasaki ampli-
tude reads now RGNS = 67 Dexp (1) fexp (£)£(2)/kpT and

exp
inserting our theoretical expressions we get Rieor =

31— f20/161(0 = 5£2(0)/[1 = wO)])/2f2().

Less attention has been paid to the two other TCs,
the thermal conductivity « and the thermal diffusion ra-
tio k7. The thermal conductivity is finite at 7., but it
has a critical enhancement. The thermal diffusion ratio
diverges asymptotically like the inverse mass diffusion.
For a quantitative prediction one additional time scale has
to be determined from experiment [if w(z) is nonzero].
This may be either the scale p of the thermal conductiv-
ity or the time scale L of the thermal diffusion ratio. The
other TC is then fixed by the flow already determined.
We found [7] D(t)k7(t) = pL/R = const in the whole
crossover region where both D and kr are nonasymp-
totic. This temperature independence is an exact result
within renomalization group theory in agreement with ex-
periments in aniline-cyclohexane mixtures [23]. The ther-
mal conductivity reads

Ktheor (7) o M(l _ Wz(l) )
pT RT 1 — f2(r)/16/°
We estimate the enhancement of the thermal conductivity
as Kiheor (I = 0)/Kiheor (10) ~ [1— Wz(tO)]71~
We now compare % and D with experiments in aniline-
cyclohexane mixtures. Again we fit the shear viscosity
data [24] [see Fig. 3(a)] (¢ we take from [25]) and then
predict the mass diffusion [26—28] [see Fig. 3(b)]. In
the analysis of [26] the asymptotic Kawasaki amplitude
(taking the mode-coupling value) has been used to re-
late the different temperature dependent physical quanti-
ties. Here we use the temperature dependence calculated
by RGT for the TCs, and after fixing three parameters
[ f(t0), w(to), T'@(19)] we predict the temperature depen-
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FIG. 3. Aniline-cyclohexane: (a) Fit of the shear viscosity

[24]. (b) Prediction of the mass diffusion coefficient [28].
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dence D. It turns out that the mass diffusion behaves
almost asymptotically although the shear viscosity does
not. This is possible since w(¢) enters D only indirectly.
Whereas f has almost reached its asymptotic value, w
maintains to decrease from its initial value w(z = 0.03) ~
0.9 to zero. The flow of w(z) could be most directly
checked by measuring the resulting enhancement of the
thermal conductivity. From our analysis we guess roughly
an enhancement of 65% in the region 1072 to 1074, A
more detailed study of this case and other mixtures will be
given elsewhere.

We have found surprisingly good agreement of
nonasymptotic field theoretic RGT in one loop order with
the critical transport properties in several fluids. This may
be the basis of future more quantitative work in this field
and supplements the results obtained by mode-coupling
theory (for recent developments in pure liquids see [21]
and in mixtures at the plait point [29], for a review
[30]). More precise measurements of static quantities
are needed, e.g., the correlation length should be known
experimentally. Regarding the thermal conductivity at
the consolute point we suggest to look for the critical
enhancement in order to verify the flow of w(z). On the
theoretical side it would be worthwhile to include the
two loop expressions. Our one loop value for x, seems
to be systematically too small. Measurements of sound
attenuation are an additional test for the consistency of the
nonasymptotic RGT description and are highly desirable.

We acknowledge helpful discussions with H. Meyer
and J. V. Sengers, and we thank H. Meyer for sending
us his experimental data.
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