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Doppler Peaks from Cosmic Texture
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We compute the angular power spectrum of temperature anisotropies on the microwave sky in the
cosmic texture theory, with standard recombination assumed. The spectrum shows "Doppler" peaks
analogous to those in scenarios based on primordial adiabatic fluctuations such as "standard cold dark
matter, " but at quite different angular scales. There appear to be excellent prospects for using this as a
discriminant between inflationary and cosmic defect theories.
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The cosmic microwave background (CMB) anisotropy
is the cleanest probe we have of structure formation in
the Universe. The COBE observation [1] provided the
first solid evidence of anisotropy, but due to its limited
angular resolution it provided little more than an overall
normalization and rough evidence of scale invariance.
Higher resolution measurements of the angular power
spectrum and statistical properties of the anisotropies will
provide far more powerful constraints on theories.

Existing theories of the origin of structure are based
either upon the amplification of quantum fluctuations dur-

ing inflation or upon symmetry breaking and field order-
ing. The latter category includes cosmic strings, global
monopoles, and textures. While techniques for computing
perturbations in inflationary theories are well established
[2], greater uncertainty is attached to field ordering theo-
ries because they are nonlinear and non-Gaussian.

Nevertheless, there has been progress, particularly in
those theories described by the nonlinear sigma model
[3]. Recently the degree scale CMB anisotropies were
calculated for the cosmic defect theories under the sim-

plifying assumption that the Universe was fully ionized
[4]. Reionization is more likely in defect theories than
in Gaussian theories because large density perturbations
around the defects could cause early star formation, re-
leasing ionizing radiation. But the extent of this effect is
uncertain because it depends on the efficiency of star for-
mation, which is poorly understood.

In this Letter we compute the power spectrum of CMB
anisotropies in the texture theory, assuming instead stan-
dard recombination. In particular, we wish to see whether
acoustic oscillations of the photon-baryon-electron (PBE)
fluid produce "Doppler peaks" analogous to those in in-
flationary theories. The calculation is harder than in the
reionized case, but simplifies if we concentrate on the
power spectrum alone rather than attempting to make sky
maps. While the non-Gaussianity of such maps is un-

doubtedly a key signature for cosmic defects, the CMB
anisotropy power spectrum is likely to be measured first.

The power spectra of perturbations depend only on the
two-point correlations of the field stress-energy tensor,
O~„and one can hope to model these in a simple way.

We use three-dimensional field simulations to construct a
model for the 0'„, correlations, which are then fed into
linear perturbation codes to compute density perturbations
and anisotropy spectra. As a check of our model, we
perform full 3D fluid simulations of the source fields,
gravity, and matter in the tight coupling epoch, and
compare the perturbation spectra and cross correlations in
the simulations with those predicted by the model.

There are a number of advantages to this hybrid ap-
proach. A single 3D simulation has very limited dynamic
range, but many such simulations can be combined to help
construct a model valid over all relevant length scales.
Such a model allows one to calculate ensemble averaged
power spectra without the noise inherent in 3D simula-
tions. It can also be used in a Boltzmann calculation to
compute the anisotropies for arbitrary ionization histories.

In field ordering theories, the simplest assumption is
that the Universe began in a homogeneous and isotropic
initial state. When a symmetry breaking phase transition
occurs, some field with "angular" degrees of freedom is

given a nonzero vacuum expectation value, 2

The source for perturbations is H~„ the stress-energy
tensor of the ordering fields, which interacts with the
matter and radiation only gravitationally. Since the field
ordering process is causal, it follows that the correlations
of the fluctuating part of H~, are strictly zero for space-
time points whose past light cones extrapolated back to
the time of the phase transition do not overlap. We work
in synchronous gauge, setting all perturbation variables
zero before the symmetry breaking phase transition. The
metric and matter perturbation variables h;~ and 6z obey
causal evolution equations. Since the power spectrum
is the Fourier transform of the correlation function, it
follows that all these variables have "white noise" power
spectra on superhorizon scales at all times.

The linearized Einstein equations may be decomposed
into scalar, vector, and tensor parts: In Fourier space,
a symmetric tensor, T7(x) = XkT,J(k)e'" ", can be writ-
ten as

T~(k) = 36,~T + (k;k~ —36',,)T
+ (f, T, + f, T,') + T,', ,
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where T; k; = k, T;J = T;JkJ = T;; = O. A complete set
of evolution equations for the metric perturbation vari-
ables is

2a k 2—h + —h = SrrGa P p~6jv + 8rrG8po, (2)
a 3 N

k h = 24—rrGik P(p + p )tj + 24rrGII, (3)
N

h +2 h + k h =16rrGO'
lJ lJ lJ lJ

h; + 2 —h, = 16rrGO';

where II —= 8;8p;. The metric perturbations are defined
by ds = a (r) t dr +—[6;z + h;~(x, r)]dx' dx~), with
r conformal time and a(r) the scale factor, and h

h —h . The variables pN, pN, 6N, and vN refer to the
density, pressure, density contrast, and velocity of each
quid —photons, baryons, cold dark matter, and neutrinos.

We wish to model 8~, while respecting stress-energy
conservation [5],

a
0~op + —(0~op + 0~)

a

Il + 2 —II = ——(8 + 20 ) .
a k S

a 3

The underlying dynamics is that of nonlinearly coupled
scalar fields. A crude description is that spatial gradients
in the scalar fields are "frozen" outside the horizon, and
redshift away after horizon crossing. This may be viewed
as a change in the effective equation of state: If there
were only spatial gradients outside the horizon, we would
have 0 = —0'pp. If these gradients redshifted away like
radiation, we would have 0'pp = +0 inside the horizon.

In our model we treat the source as a quid with a
scale-dependent equation of state: 0 = y(k, r)0'pp and
0's = ys(k, r)8pp, where y and ys are determined from
field simulations. In the pure matter or radiation epochs
they have scaling form, being functions only of k~. With

y and ys fixed, Eqs. (6) determine the evolution of all
scalar parts of 0„,.

The main simplification this model makes is that the
evolution equations for 8~, are linear. While a given
mode is outside the horizon it quickly settles into a
"scaling" solution specified by a single amplitude. It
follows that in the long time limit unequal time cross
correlations factorize, i.e.,

(Ag(r)B g(r')) = (A g(r)Bg(r')) = a(k, r)b(k, r'),
(7)

where a(k, r) and b(k, r) are "master" functions satis-
fying the same linear equations that the random field
modes A~ and Bg do. Setting B~ = AI, and ~ = ~', one
sees that a (k, r) is just the power spectrum of Aq(r).

The functions y and y are given by (OppO)/(Opp) and
(Ooo8 )/(8pp), which we measure in 3D simulations and
fit to specify the model [6].

The initial conditions for the model are determined
by scaling and causality. Scaling implies that all cor-
relators should be specified in terms of a single scale 7.

alone. Dimensional analysis then gives (~8pp(k, r)~ ) =
f(kr)Pp/Vr, where V is a fiducial comoving volume.
Causality implies a white noise spectrum for Opp, so that
f(kr) = const for kr « 1. Thus for each k the master
function for Opp should be a fixed constant times r '~2 at
early times. Scaling of 0 and Eqs. (6) fix y(0) = —

z in
the radiation era.

Let us make two comments on the most obvious
limitations of the model. Examination of the large N
expressions [7] shows that the Fourier modes of the
energy momentum tensor far outside the horizon (kr «
1) or far inside the horizon (kr )) 1) are dominated by
interference terms involving horizon wavelength modes,
where the most important dynamics is taking place. These
interference effects are unlikely to be well represented
by the dynamics of a fIuid in which all Fourier modes
decouple. However, the dominant perturbations in a given
Fourier mode of the metric and matter variables are
produced by the source around horizon crossing, so all we
really require is that the model adequately represents the
source at this time. At horizon crossing, only dynamics
on a single length scale are involved, and these may be
reasonably well described by quid equations.

A second concern regards the source unequal time
correlations, which completely determine all perturbation
power spectra. Equation (7) shows that the model actu-
ally builds in maximal unequal time correlations, leading
to an overestimate of the coherence in time of the source
terms [8]. We argue again, however, that around horizon
crossing there is only one length and time scale involved,
and the time scale for decoherence of the source is of the
same order as that for the source to redshift away. Nev-
ertheless it is of some importance to check the model pre-
dictions against a full 3D simulation to see whether the
predicted coherent oscillations are really there.

Figure 1 shows the power in the variables h, 6~,
6~, and v~ from the 3D code against those predicted by
model, at the instant of matter-radiation decoupling. We
have similarly checked the power spectra of the source
terms Opp and II. As mentioned, we are particularly
concerned to check whether the radiation oscillations
evident in the model are really present, since these give
rise to the Doppler peaks. The power spectra for 6~ and

v~ show evidence of coherent oscillations, but these are
less pronounced than in the model. An important question
is whether this smoothing is due to real incoherence in the
perturbations, or instead is a numerical artifact.

A positive definite quantity like the power is especially
sensitive to numerical noise and sampling errors. A
cleaner check of whether phase-coherent oscillations are
present in the 3D simulations is to measure the cross
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model: plausible variations change the results by less
than 10%. Likewise the qualitative shape of the vector
and tensor contributions is fairly model independent. We
attach greater uncertainty (of order 50%) to the relative
amplitude of the perturbations on larger (COBE) scales,
partly because of statistical uncertainties in the vector
and tensor power spectra extracted from the 3D code,
but also because the scalar power on large scales is
sensitive to variations in the "equations of state. " As a
check, however, we have measured the power in 6~ at
decoupling in the 3D code, and compared this with the
large scale anisotropy as computed in Ref. [3]. The ratio
is consistent with the model predictions to within 30%.

The most striking difference between the texture and

inflationary spectra is that Doppler peaks and troughs
are almost "out of phase" where inflation predicts a
maximum texture gives a minimum, and vice versa. This
behavior is reminiscent of that found in "isocurvature"
models [11],and it occurs for a similar reason [12]. The
radiation oscillations are driven by the metric perturba-
tions: 6~ + cq6~ ——3h. The phase of the oscillations
is determined by the behavior of h as a mode crosses
the horizon. In "adiabatic" theories like the simplest

inflationary models, one has superhorizon curvature per-
turbations, in which the source term h is to a first approxi-
mation constant. In the usual isocurvature theories, where
there are instead superhorizon perturbations in the baryon-
to-photon ratio, the source term is not constant, and this
leads to a relative phase shift in the oscillations.

In the field ordering theories, there are no perturbations
in either the space curvature or the baryon-to-photon ratio
on superhorizon scales. This leads to yet another behavior
of the h forcing term around horizon crossing. Scale in-
variance and dimensional analysis imply that (~h(k)~ ) =
g(k7. )r /V, with g a dimensionless function. In stan-
dard "adiabatic" theories, h ~ 7. so g o(- k~ for small k~.
But for field ordering theories, the small k behavior of g
is fixed instead by causality: h must have a white noise
power spectrum, so g = const and h ~ 7 ~ at small k7. .
Thus the forcing term decreases as ~ '/ . It follows that

6~ reaches its first maximum sooner than in the adiabatic
theories. It is intriguing that, at least in the context of
theories without superhorizon baryon-to-photon Auctua-
tions, the small scale angular power spectrum, and, in par-
ticular, the phase of the Doppler peaks, could be telling

us something as fundamental as whether the perturba-
tions were generated causally within the standard big bang,
or were necessarily generated in a preceding inflationary
epoch.
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