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Cooperative Molecular Motors
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We present a simple stochastical model for motor molecules that cooperate in large groups. This
model could apply for actin-myosin motors in muscles and for motility assays with a high concentration
of motor molecules. We calculate the dependence of the velocity on the applied force as a function
of ATP concentration and show the existence of a dynamical phase transition allowing for spontaneous
directed motion even if the system is spatially symmetric. In the symmetric case, the problem is
isomorphous to a paramagnet-ferromagnet transition, in the asymmetric case to a liquid-vapor transition.

PACS numbers: 87.45.Bp, 05.40.+j, 87.10.+e

Many active processes in biological systems such as
muscular contraction, cell motility, and some cellular
transport processes are mediated by molecular motors.
These motors are protein molecules that can perform me-
chanical work in the presence of adenosine triphosphate
(ATP) as an energy source [1].

Different families of motor proteins have been distin-
guished that actively slide along rodlike filaments. These
filaments play the role of a track to guide the mo-
tion. Dyneins and kinesins operate on microtubules while
myosins walk along actin filaments. In many cases, these
motor molecules do not operate as single particles but co-
operate in groups that form a multimotor [1,2].

The most prominent example of a multimotor is the
actin-myosin system in muscles [1,3]. Electron mi-

croscopy and x-ray diffraction studies of muscle fibers
reveal that many myosin molecules are attached to each
other with their tails and form myosin filaments. The
heads of the myosin molecules are bound to actin fila-
ments. During muscular contraction, the myosin filaments
actively slide along actin filaments driven by the chemical
energy of ATP. The spacing of actin monomers along the
actin filaments bear no special relation with the spacing of
myosin molecules in the myosin filament, so that it is a
good starting point to consider the motors and track struc-
ture as incommensurate [3].

Recent improvements of experimental techniques allow
the direct observation of the action of motor proteins [4—
6]. In motility assay studies, a glass surface is coated with
motor molecules in aqueous solution. Track filaments
bound to the motors begin to move along the surface in
the presence of ATP [4,6,7]. The sliding velocity can be
measured as a function of ATP concentration. However,
since the function of motors is not directly observable at
molecular scales, the mechanisms of force generation are
still not resolved.

Simplified stochastical models have been suggested that
give insight in the physical mechanisms important for

the force generation of molecular motors. They take
into account fluctuations and Brownian motion [2,8—
12]. Besides the work of Leibler and Huse [2], who
compared the situations of single motors and motors
working together in large groups, the previous theoretical
work focused on mechanisms for the directed motion of
single motor molecules [8—12].

In this Letter, we introduce a theoretical model to
describe the cooperative behavior of large ensembles of
motors. The motor molecules are described as particles
that are attached to a backbone. The model addresses
incommensurate or disordered arrangements of particles
that correspond to the situations in muscle fibers and
motility assays, respectively. The sliding velocity of the
backbone along its track is calculated as a function of the
external force and the ATP concentration.

We show that the cooperation of a large number of
particles can lead to dynamical phase transitions and
instabilities that characterize the behavior of such a motor
collection. It turns out that cooperating motors can
generate a directed force even if the system is symmetric.
The direction of motion of a symmetric system is selected
by spontaneous symmetry breaking.

We define our model for the most simple case, where
particles are rigidly attached to a backbone with fixed
spacing s. The position x; of the ith particle reads x; =
is + X, where X is the position of the backbone along
its track. Each particle in the vicinity of the track can be
either in a strongly bound state o. = 1 or in a weakly
bound state o = 2. The energy of a particle in state
o. is given by periodic potentials W (x) = W (x + l)
with period l. This periodicity reflects the regular surface
structure of the track filament formed by subunits of size
l. From now on, we use cyclic coordinates x = x modl
with 0 ( x ~ l, which describe the particle positions
with respect to the potential period.

The system is characterized by distribution functions
P and P with P(x, t) = P~(x, t) + P2(x, t), which give
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the probability density to find a particle in state o. at
position x at time t. For a finite number N of particles,
P(x, t) = X 'g; I 6(x —x, (t)). We are interested in
the limit of large N. In this limit, P approaches a constant
value P(x, t) = 1/l if the structure of motors and track is
incommensurate, i.e. , the ratio I/s is irrational. The same
result holds if the particles are randomly attached to the
backbone with a homogeneous distribution.

The equations of motion for P read

B,PI + v BxPI = —cut(x)PI + A@2(x)P2,

BtP2 + v &xP2 col (x)PI ~u2(x)P2 .

Here, ~I(x) and ru2(x) denote the transition rates between
the two states. The velocity of the backbone v = B,X
is determined by the relation f,„, = AIIv —f, which
expresses the externally applied force per particle f,„, in
terms of the force per particle

dx (PI r), WI + P2 d, W2),

exerted by the potentials. The friction force AoIj is due to
viscous damping with damping coefficient Ao.

Transitions between the two states are (i) thermal tran-
sitions, which obey detailed balance, and (ii) ATP driven
excitations, which do not obey detailed balance and which
drive the active motion of the motors. We write iut (x) =
ru2(x) exp([WI(x) —W2(x)]/T] + BO(x), where T de-
notes temperature [9]. The excitation amplitude II is pro-
portional to the concentration of ATP and O(x) describes
the x dependence of ATP excitations. For A = 0, de-
tailed balance is preserved.

Using the relation P2 = PI + I/l, whic—h is valid for
an incommensurate or disordered system, the probability
distribution in the steady state obeys

v 8 PI = —[ruI(x) + iu2(x)]PI + A@2(x)/l . (4)
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feature stemming from the "cooperativity" of motors. To
better understand the implications of this sign change, we
consider first a symmetric track filament. Under such
circumstances, Eq. (6) reads to relevant order (with the
condition of no external force f,„, = 0),

—(~II+ fn)v = v'fn + O(v') (7)

If Ao + fn ) 0, the only solution is v = 0. If AtI +(j)

(~)
fn ( 0, the system bifurcates towards a moving solution
[see Fig. 1(a)] with

(~) &/2

v = ~~ l)
' (A —II,), (8)

~f(n nl=

where A, is the critical excitation rate for which AtI +
fn = 0. The solution with v = 0 is stable for A ( II,(~)

and becomes unstable for 0 ) A, . In the latter case,
starting with v = 0, any small perturbation grows in
time because the force f exerted by the potentials acts
to increase the velocity. Eventually the system reaches
a state with constant velocity v as given by (8). This
state is stable with respect to small perturbations. The
direction of motion is selected randomly as a result of
fluctuations via spontaneous symmetry breaking. With an
external force, the problem is formally equivalent to that

It is of pedagogical value to solve (4) in a power
expansion as a function of v,

n (n) 1 (n —1)

n=O CcP) + M2

(n)
with P,

and PI = cu2/(rut + ruz)l. The equation for v is then
(o)

fext fn = (~o + fn )v + g fn v ~ (6
fl=2

0 LkLkk

I

0.01

0.1

with fn' = f,' P,'"'a, (W, —W2) dx.
If detailed balance is preserved (A = 0, absence of

(0) (i)
ATP) fn = 0, fn ~ 0, there is no spontaneous motion,
friction is increased. If detailed balance is broken, two

(0)
important features appear: (i) fn becomes different from
zero; the system can set itself into motion spontaneously.
This appearance of a self-propelling force has already
been discussed in the framework of single motors [8,9].

(~)
(ii) fn can become negative. This is a qualitatively new
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FIG. 1. (a) Spontaneous velocity v as a function of the
excitation amplitude 0, for a symmetric potential as shown in
Fig. 2(b) with d/l = 0.1 and Aocu2l /U = 0.1. (b) External
force f,„, as a function of the velocity v for the same system
and 0 = 0, A/cu2 = IIc/cu2 = 0.026 and A/cu2 = 0.1.
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of a magnetization in the presence of a magnetic field
close to a paramagnetic-ferromagnetic critical point [see
Fig. 1(b)].

The general case of an asymmetric filament is now
equivalent to that of a liquid-vapor critical point. The
velocity corresponds to the density, the excitation ampli-
tude to temperature, and the force to pressure. The critical
point v„f„A, can be defined in exactly the same way
as in the case of Auids, and the velocity in its vicinity
obeys the standard mean field laws [~v —v, ~

~ (f„, —
j,)'/', n = n, ; [v —v,

~
(n —n )'/ f' = f ]

We postpone for a more detailed article the correspond-
ing discussion and prefer to illustrate these considerations
on a simple example. We choose a piecewise linear po-
tential W~, a constant W2, and a piecewise constant rate
of ATP excitations as described in Fig. 2. For simplicity,
we assume that co2 is constant, and we look at the limit
of small temperatures compared to the potential barriers
T « U. In this limit, IvI(x) = AO(x), and thermal ex-
citations are neglected. The (f„,, v) diagram is plotted
in Fig. 3(a) for an asymmetric track filament and differ-
ent values of 0: For 0 & A„v increases monotonously
as a function of f„,. The effective friction coefficient
A =— Bf,„I/I)v is everywherepositive. For A = A„v in-
creases monotonously as a function of f„,but at the criti-
cal point Bf,„I/Bv = 8 f„I/dv = 0. For I) ) A„ the
function v( f,„,) is multivalued in a certain region, like a
van der Waals isotherm below the critical temperature: the
two steady states with I)f,„I/Bv ) 0 are stable, the inter-
mediate one with I)f„I/I) v ( 0 is unstable.

The existence of unstable steady states leads to disconti-
nuities of v as a function off,„,as follows: first, we look at
the load-free velocity (i.e., f„, = 0). If a load is applied,
i.e., f,„I ( 0, v decreases. The maximal load

~ f,„~ the
collection of motors can carry is determined at the mini-
mum of the function f„,(v). If this load is exceeded, i.e. ,

( f«I ) ) ~ f,„(,the system changes its direction of motion
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discontinuously. For reverse motion, a similar instability
occurs at the maximum of f,„,(v). These discontinuities
are indicated in Fig. 3(a) for A/aIz = 0.02 by horizon-
tal lines. This instability occurs for finite velocity. The
system therefore becomes unstable before the motion is
stopped: It cannot be reversed continuously by applying
an external force. In an experimental situation this insta-
bility would look like a sudden "rip-off" of the track fila-
ment from the motors as soon as a critical load is reached.
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FIG. 2. Schematic diagrams of the potentials WI(x), W2(x),
and the rate of ATP excitations f10(x) for an asymmetric
system (a) and a symmetric system (b). The potentials are
characterized by the amplitude U, the period l, and the
asymmetry parameter a/l of the sawtooth potential WI. ATP
excitations occur only within an interval of width d, centered at
the potential minimum where O(x) = 1.

FIG. 3. (a) External force f„, as a function of the velocity v
for an asymmetric potential as shown in Fig. 2(a) with d/1 =
a/t = 0.1 and AoaI2l /U = 0.1. The curves correspond to
A/co2 = 0, 0.009, 0.02, 0.03, and 0.04, from top to bottom.
Note the critical isoexcitation (equivalent to critical isotherm)
for 0, /aI2 = II, /cuq = 0.009, which includes the critical point
C with critical values v, /aIql = 0.005, f,1/U = —0.004.
(b) Sliding velocity v as a function of II for f„, = 0 (top)
and f„,l/U = —0.01 (bottom). (c) Efficiency g as a function
of f„, for II/aI2 = 10 and AG = U.
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The velocity v for an asymmetric track filament is dis-
played as a function of the excitation amplitude 0 in

Fig. 3(b). With no load, the motors begin to move for
arbitrarily small A and reach for large 6 a maximal ve-
locity U/co2l = 1.94. With a constant load f„,l/U =
—0.01, the system slides backwards for small A. If A
is increased, the direction of motion changes discontinu-
ously at A/to2 = 0.063. For decreasing A, this instabil-
ity occurs for A/co2 ——0.02. The sliding velocity as a
function of A is hysteretic.

An important property of the system is its efficiency
lV'/Q. Here, W = f„tl—is the mechanical work

performed during one potential period and
l

Q —= 0 AG — dx Pi(x)0(x)
V p

(9)

is the energy consumption per particle along one potential
period. The energy cost of exciting a particle to state
cr = 2 is denoted by AG.

The efficiency g is displayed as a function of the load
in Fig. 3(c). For increasing load, the efficiency reaches a
maximum where g = 0.51. It decreases again before the
maximal load

~ fex, ~

=
( f,„~ is attained and the system

becomes unstable.
In the examples, as shown in Figs. 1 and 3, thermal

excitations are neglected. The critical point still exists
if thermal excitations are taken into account, but its
location in the (f„,, v, A) coordinate system varies with
temperature.

The results discussed so far have been obtained with the
assumption that the motors are rigidly coupled. This is
equivalent to a mean field theory, which neglects fIuctua-
tions of the positions of individual particles. These fluctua-
tions can be taken into account by elastically coupling the
particles to the backbone via a spring with elastic modu-
lus t-. It can be shown that for sufficiently large values
of c this generalized model exhibits the same qualitative
behavior as the rigid model described here [13].

In summary, we have shown that a large number of
particles, which are coupled together by a rigid backbone
and which move in periodic potentials, can form a very
efficient motor. This efficiency comes from the fact
that no diffusive steps are required as a result of the
cooperativity of the system. This cooperativity leads
to the existence of instabilities and dynamical phase
transitions. In the symmetric case, the transition is
isomorphous to a paramagnet-ferromagnet transition, in
the asymmetric case to a liquid-vapor transition. As a
consequence, the velocity as a function of the applied
load shows discontinuities and hysteretic behavior. In
particular, the motion cannot be stopped or reversed
continuously by increasing the load. An important result

is the generation of a directed force and directed motion
even if the system is symmetric. This behavior differs
fundamentally from that of single particles where the
spatial asymmetry of the system is essential.

The mechanisms for spontaneous symmetry breaking
and directed motion that we propose here are not restricted
to biological motors and ATP excitations. They could
also be implemented in a physical system and driven by
other types of excitation processes. If our model is rele-
vant for biological motors, the characteristic behavior as
described for asymmetric potentials should be observable
in motility assay experiments with a high concentration of
motor molecules.
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