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Spatial Dependence of Exchange Interaction in Heisenberg Antiferromagnet Zn1 «Mn» Te
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X-ray diffraction study of exchange striction in a Zn&, Mn, Te [001] epilayer reveals a long-ranged

magnetic exchange interaction. A new independent-exchange-path model is proposed to explain the

experimental result. It provides the strengths of exchange constants for all neighboring spins.
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Magnetic ordering in a crystal lattice is determined

by the properties of an exchange interaction between a
pair of spins, S; and S~, as described by the well-known
Heisenberg Hamiltonian [1], H,„=—2 g J(r)S; SI,
where J(r) is the exchange parameter and r is the spatial
separation of the two spins. Studies of the exchange
constant J(r) and its dependence on the spatial separations
of neighboring spins represent an important aspect of solid
state physics in magnetic materials.

For manganese-containing zinc-blende alloys, also
known as diluted magnetic semiconductors (DMS's),
an antiferromagnetic (AFM) nearest-neighbor (NN)
Mn-Mn exchange (described by J~) dominates the spin
interactions, and results in a type-III AFM order at low
temperatures [2] in the face-centered-cubic (fcc) lattice.
The magnetic structures of these materials have been
studied extensively by elastic neutron scattering [3], and
the NN exchange integrals J~ have been measured using
such techniques as high-field magnetization steps [4] and
inelastic neutron scattering [5,6]. Very little is known,
however, about the spatial variation of the exchange
constant J(r) and, consequently, about the strengths of
the more-distant-neighbor interactions. Theoretically,
it has been shown [7] that superexchange is the pre-
dominant exchange mechanism in DMS materials, but
many fundamental questions about J(r) remain [8—11].
One such basic question is whether the interaction is of
short-range or of long-range nature. The short-range
behavior is derived by Larson et al. [7] from a three-level
theoretical model, which yields an isotropic spatial
dependence of J(r) in the Gaussian form exp( pr /a )—,
where p = 4.89 and a is the fcc lattice constant. A
longer-range interaction of a form J(r) —(r/a) ", with
n = 5—7, has been proposed by Twardowski et al. [12],
based on an empirical analysis of low-temperature sus-

ceptibility data, together with the assumption that the Mn
ions are distributed in a completely random fashion. A
much weaker spatial dependence for the second through
the fourth nearest-neighbor constants is suggested by
Bruno and Lascaray [13],based on the number of equiv-
alent ways of connecting these distant neighbors through

the anion-cation chemical bonds. Available experimental
estimates on the distant-neighbor exchange constants are
generally indirect and imprecise, making it difficult to
distinguish these existing models [8,9].

One of the most direct ways to obtain the spatial de-
pendence of the exchange interaction is to measure the
lattice distortions (exchange striction) in the magnetically
ordered phase by x-ray diffraction [14,15]. In this Letter
we utilize this effect to study the Mn exchange interac-
tions in a type-III fcc DMS epilayer Zn&, Mn Te. Our
results reveal a long-ranged exchange interaction, which
leads to a new model of the spatial and the directional
dependence of the superexchange interaction in DMS ma-
terials. Our model accounts for all neighboring interac-
tions, and shows a predominant NN exchange as well as a
long-ranged interaction among the distant neighbors.

The Zn ~ Mn Te sample used in our study was a 1 p, m
thick specimen with x = (93.8 ~ 0.5)%%uo, grown by molec-
ular beam epitaxy (MBE) on a GaAs(001) substrate, with

a 2 p, m ZnTe buffer layer to minimize the lattice mis-
match [16]. The crystal structure of Znt, Mn Te is of
the zinc-blende type, with a = 6.323 A. The x-ray mea-
surements were performed at the A2 station of Cornell
High Energy Synchrotron Source (CHESS), with an inci-
dent x-ray energy of 18 keV. The sample temperature was
controlled to ~1 K by a closed-cycle helium refrigerator,
which was mounted on a standard 4-circle diffractometer.
A perfect-crystal analyzer was used for high resolution lat-
tice parameter measurements, which provides a precision
of Aa/a = 3 X 10 . Althoughthereisconsiderablelat-
tice mismatch between the Zn&, Mn Te epilayer and the
buffer, our measurements of the lattice constants normal
and parallel to the growth plane showed an almost strain-
free Zn] Mn Te epitaxial layer, indicating that the epi-
layer was sufficiently thick to relax to an essentially cubic
high-temperature phase.

At temperatures below the Neel temperature
T& = 62 K, the Zn] Mn Te layer exhibits type-III
AFM order, with the unit cell doubled along the cubic
axes ([001], [010], and [100]), creating three types of
equivalent domains in different regions of the sample
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[16]. The magnetic ordering is accompanied by the
exchange striction effect, causing a Bragg reAection
to split into two (or more) peaks. In order to obtain
complete information on the lattice distortions in the dif-
ferent domains, we measured several Bragg rejections in
different crystallographic directions at low temperatures.
In Fig. 1 we show a typical splitting of the (208) and
(802) Bragg refiections at T = 25 K (filled circles), with
the corresponding T = 55 K profiles as dashed lines.
The temperature dependence of the splitting, converted to
the lattice constants parallel and normal to the epilayer
plane, is shown in the inset in each plot. It shows that the
exchange striction effect occurs at around 52 K, which
is well below the Neel temperature of 62 K. This result
confirms earlier measurements on MnTe thin films [16],
and we will come back to this "delayed" magnetostriction
phenomenon below.

Figure 1 shows that the [100] and [010] domains
(those with cell-doubling axes in the epilayer plane),
although equivalent to each other, are not equivalent to
the [001] domains. A quantitative analysis on the peak
intensities and positions indicates that (i) at the lowest
temperatures the [001] type comprises about 60% of
the domain population, while the [100] and [010] types
share the remaining 40%; and (ii) the [001] domains are
tetragonally deformed, but the [100] and [010] domains
are orthorhombically distorted. The distortions can be
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FIG. 1. X-ray diffraction peaks at T = 25 K for four crystal-
lographically equivalent refiections, (802) as filled circles and
(082) as solid line in (a), and (208) as filled circles and (028) as
solid line in (b). The dashed lines indicate the peaks at 55 K.
Insets show the temperature dependence of the lattice constants
parallel (a~~) and normal (a~) to the thin film. The solid curves
in the insets are guides to the eye, and the dashed curves are fits
to the high-temperature data, indicating the behavior expected
in the absence of the exchange striction.

described by strain components e, e,, e«given by
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where ao( —6.66 ~ 0.15) X 10 at T = 25 K. The
term eT is the normal thermal expansion that needs
to be subtracted from eo in order to obtain the true
magnetostrains. Using a method devised by Morosin [15]
and a Debye temperature 0 = 202 K [17], and fitting
the high temperature data [dashed curve in the inset in

Fig. 1(b)], we obtain eT = (—2.69 ~ 0.27) X 10 from
T = 55 to 25 K. We find that the thermal expansion
is negligible in the x-y plane [Fig. 1(a), inset], possibly
because the epitaxial film is restrained by the substrate.

The exchange striction is the result of an energy bal-
ance between the magnetoelastic energy involving spatial
derivative t/'J(r) of the exchange interaction [11,18]

U = —2 g e px BJ(r~)/z/xp(S; . S~), (2)
i~j

and the elastic energy of the crystal [1]

U, = zCti(e, + ~ + c„)1

+ C/2(+xx+yy + +yy+zz + +zz+xx) ~

where C~~ and C]q are the elastic constants for a cubic
crystal, the repeated indices (n, P = x, y, z) imply sum-
mations, and r;j is the position vector of the neighboring
spins. To evaluate U, we consider up to the fourth near-
est neighbors for each spin. For type-III fcc antiferromag-
nets, there are 8 NN AFM interactions (S; S/ = —Sz)
per chemical unit cell, all of which lie in the AFM
sheets perpendicular to the unit-cell-doubling axis. These
AFM bonds provide a dominant driving force for the
deformation within the AFM sheets. For interactions
with adjacent sheets, there are the same number of NN
pairs with S; . SJ = —S as those with S, S/ = +Sz.
Thus their contributions to U cancel completely, so that
the interaction is dominated by the more distant neigh-
bors. The total second-nearest-neighbor interactions in-
clude 4 AFM bonds along the cell-doubling direction
and 8 ferromagnetic (FM) bonds within the AFM sheets.
Similarly, the third nearest neighbors include 16 FM
bonds, and the fourth nearest neighbors involve 8 FM
bonds in, and 16 AFM bonds out of, the AFM sheets.
Based on crystallographic symmetry, the magnetoelastic
energy density for a [001] domain can be written as

U = (8xS /V, ) [B~~(e„+ ayy) + Bi azz], (4)

where x is the Mn concentration in the cation sublattice,
V, is the volume of the chemical unit cell, S = 5/2 for
Mn, and BII and B~ are the magnetoelastic constants
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parallel and normal to the AFM sheets, respectively,
which are functions of VJ(r). Equivalent forms of
Eq. (4) for other types of domains are obtained by proper
permutations of the strain components.

The equilibrium strain values are given by setting the
derivatives of the total energy U = U, + U equal to
a stress field (o.„o.~) in the x yp-lane: BU/Be, =
—o. , BU/BeY&, = —o.,„BU/Ba« = 0. This stress field
retains the tetragonal symmetry for a [001] domain,
but lowers the symmetry of a [100] or [010] domain
te orthorhombic. Solving the above equations for the
[001] or [100] domains separately, and using C~ ~

=
2C~q = 68 GPa [19], together with the measured dis-
tortions in Eq. (1), we obtain B~~

= C, (aT —1.88sp) =
261 ~ 15 K and B~ = C~T = —71 ~ 0 7 K, with
C, —= C~~V, /8xS . We note that the magnitude of B~,
which depends only on distant-neighbor interactions, is
much smaller than that of B~~ (as would be expected),
but it is by no means negligible. The opposite sign of
B~ represents a driving force for an expansion along the
cell-doubling direction, in addition to the usual elastic re-
sponse to the contraction in the AFM sheets caused by
the NN bonds. This opposite force arises mainly from
the third-nearest-neighbor interactions to which a large
number of FM spins contribute. This provides additional
evidence for the importance of long-ranged exchange in-
teraction among the more distant spins.

The characteristic long-range behavior cannot be ex-
plained by the existing Gaussian [7] and power-law [12]
models of exchange interaction in DMS materials. In fact,
forced fits by these existing models would yield n = 2.3
and a NN constant of J~ = —28 K if the power law
is used, and P = 2.3 and J~ = —58 K if the Gaussian
model is used.

In view of these failures we propose a new model of
the spatial dependence of the superexchange interaction.
There are two key parts in our new model. The first,
already pointed out by Bruno and Lascaray (BL) [13],
is that the superexchange interactions in DMS's do not
necessarily decay monotonically as the direct distance
r increases. Because the superexchange involves 3d
electrons in Mn interacting with the p orbitals in an anion
(Te), the strength of the interaction between two Mn spins
depends on the number of equivalent ways that one Mn
ion can connect to another Mn ion through the cation-
anion-cation (CAC) chemical bonds. Based on this idea,
BL suggest that J2 = 2J3 = 4J4, where the ratios are the
number of bonding connections between the neighbors.
We note that the NN interaction J& was not included by
BL in their series. The second hypothesis in our model
is that the exchange interaction from one CAC bond to
another is identical and independent of one another. This
means that if the exchange strength of a single CAC bond,
connecting two nearest neighbors, is y, then an exchange
path through two CAC bonds, connecting, e.g. , the second
nearest neighbors, will have the strength of y . It can

be seen that the new independent-exchange-path model
predicts the following picture of the exchange constants,
with Jp being a scale factor:

J& = Jpy J2 = 4Jpy J3 = 2Jpy J4 = Jpy

J5 = 4Jpy, . . . . (5)
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FIG. 2. Nonmonotonic spatial dependence of the Mn-Mn
exchange interaction according to our independent-exchange-
path model, Eq. (5), with its parameters determined from our
exchange striction measurements. Also shown are calculations
using several existing models. The inset shows that two second
nearest neighbors, i and j, interact through consecutive nearest
neighbors, i to l and l to j.

Being the overlap integral of the neighboring-ion wave
functions, y is a function of NN separation rp, and its
physical meaning is related to the virtual hopping of a
Mn-d electron between two antiparallel spin states [20].

Based on Eq. (5), the spatial gradient V'J(r) is deter-
mined by the spatial derivative y, and by the direc-
tion along which each NN exchange path is positioned.
To illustrate this latter point, we consider the gradi-
ent V'J2(r) for two second nearest neighbors, i and j,
along the x axis (inset in Fig. 2). The exchange cou-
pling between these two ions consists of four equiva-
lent pairs of NN connections (only one of such pairs
is shown): J2 = Jp P& & y(r, i) y(r~~). Thus, x BJ2/Bx =
xJpy gl &[By(r;~)/Bx + By(r~&)/Bx] = 4Jpy'y'rp Since.
only two of the four NN connections are affected by
strains along the y axis and along the z axis, we have
yBJ2/By = zBJ2/Bz = 2Jpyy'rp This examp. le demon-
strates the anisotropic, directional nature of the exchange
gradients, which has been taken into account in our model.

Similar evaluations of VJ(r) are performed for up to
the fourth nearest neighbors. Substituting these gradients
in Eq. (2), we have B~~

= rpJpyy'(1/y —8) and B
—4rp Jpyy'. Then with the measured values of B~ and B~~

we obtain y = 0.0440 ~ 0.0069 and J~/Jq = 1/(4y) =
5.7 ~ 0.9, which is in good agreement with the com-
monly accepted values of 5 —10 [8]. In fact, Eq. (5) yields
the relative strengths of all exchange constants: J~. J2.
Js. J4. J~. . . . = 5.7: 1: 1/2: 1/4: 1/23: . . .. As shown
in Fig. 2, these values exhibit a complex decay that is
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completely different from the previously discussed mono-
tonic models. The fact that y « 1 justifies our approach
of omitting the more-distant-neighbor (n ~ 5) interac-
tions and the higher-order bonding connections between
two ions. Since within our model the parameter y and
the relative strengths of exchange constants are deduced
directly from the aspect ratio B~/B~~ of the magnetoelas-
tic distortions, they do not rely on the absolute values of
the elastic or the exchange constants, making the x-ray
determination very useful.

The absolute values of the exchange derivatives, how-
ever, do depend on the values of B~ or B~~ and of the
NN exchange constant Ji. Taking Ji = —9.5 K [6], we
obtain dJi/dr = (41 ~ 4 K)/ro, which gives a normal-
ized Ji gradient of (ro/Ji)dJi/dr = —4.3 ~ 0.4. This
agrees well with the value —P = —4.89 given by Larson
et al. [7] in a Gaussian form exp( —Pr /a ). We would
like to emphasize, however, that the relative strengths
of the successive-neighbor interactions represent an en-
tirely different behavior, and do not necessarily follow the
Gaussian dependence, as shown in Fig. 2.

As we mentioned earlier, the exchange striction which
we observe occurs at a temperature well below the Neel
temperature for the AFM transition. This delayed effect
can be explained by the residual stress (cr, o.Y) in the
Zn & Mn Te epilayer. Using the observed distortions in

Eq. (1), we obtain an isotropic stress field tr, = cr~ =
Ci i (eT 1.75so)/2 = —30 MPa for all three types of

domains. This compressive stress creates an energy bar-
rier —o. AA for the [100] and [010] domains because of
their area dilation AA = a„+ eYY

= —1.75~ (~ & 0).
Thus a contraction within the AFM sheets in these do-
mains does not lower the free energy unless the average
spin alignment (5 ) is above a certain threshold, caus-
ing the striction to occur at a temperature lower than the
Neel point as observed in the experiment. Although the
[001] domains do not have this threshold, the existence of
the substrate restrains the sample's physical dimensions,
causing all three types of domains to form at the same
temperature.

Our findings have important implications to the basic
understanding of DMS materials. Contrary to most the-
oretical studies where the effect of magnetoelastic energy
has been ignored, our result indicates that this effect, which
gives rise to an effective biquadratic isotropic exchange, is
of the same order of magnitude as some theoretically pre-
dicted values of weak interactions, such as the anisotropic
DM exchange [21]. It may therefore play an important
part in theories dealing with such weak interactions. The
effective biquadratic term may inAuence various magnetic
spectroscopic measurements, such as electron paramag-
netic resonance [20,22]. The measured value of the NN
exchange gradient dJ~/dr provides essential information
for quantitative analyses of other magnetoelastic effects,
such as the strain-induced helimagnetism in the molecular-

beam-epitaxy-grown DMS multilayers [23]. Finally, our
new independent-exchange-path model, Eq. (5), provides
a unified picture of the spatial dependence of J(r), and may
stimulate further theoretical studies in this area as well as
further experimental research on magnetization steps, low-
temperature susceptibility, and neutron scattering.
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